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Abstract

We define a Fourier–Mukai transform for a triple consisting of two holomorphic vector bundles
over an elliptic curve and a homomorphism between them. We prove that in some cases, the transform
preserves the natural stability condition for a triple. We also define a Nahm transform for solutions
to natural gauge-theoretic equations on a triple—vortices—and explore some of its basic properties.
Our approach combines direct methods with dimensional reduction techniques, relating triples over
a curve with vector bundles over the product of the curve with the complex projective line.
© 2004 Elsevier B.V. All rights reserved.

PACS:02.10.Rn; 02.40.Ma

MSC:14D20; 14H60; 14J60; 14H21

JGP SC:Algebraic geometry; Differential geometry; Gauge geometry;

Keywords:Fourier–Mukai transform; Stable triples; Elliptic curves; Nahm transform; Holomorphic triples

∗ Corresponding author. Tel.: +34 923 294460; fax: +34 923 294583.
E-mail addresses:oscar.garcia-prada@uam.es (O. Garcı́a-Prada); ruiperez@usal.es (D. Hernández

Ruipérez); fabio.p@imaff.cfmac.csic.es (F. Pioli); carlost@usal.es (C. Tejero Prieto).

0393-0440/$ – see front matter© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2004.12.013



354 O. Garcı́a-Prada et al. / Journal of Geometry and Physics 55 (2005) 353–384

1. Introduction

The Fourier–Mukai transform, as originally introduced by Mukai for abelian varieties
[22] establishes a duality between the derived categories of coherent sheaves over an abelian
variety and its dual variety. The theory has been extended to more general varieties, includ-
ing K3 surfaces[3], Calabi–Yau threefolds or elliptic fibrations[9,16]. In particular, it is
a very powerful tool in the study of moduli spaces of vector bundles over abelian surfaces
and K3 surfaces (see[9,16,21,23,28]for instance). In the gauge-theoretic side, the Nahm
transform provides a differential geometric analogue of the Fourier–Mukai transform relat-
ing instantons (or monopoles) on dual manifolds[4,6,17,24]. In many cases, whenever it
makes sense, both transforms are compatible in a suitable way.

In this paper, we study Fourier–Mukai and Nahm transforms for holomorphic triples
over an elliptic curve and their corresponding vortex equations. A triple here consists of
two holomorphic vector bundles over the elliptic curve and a homomorphism between them.
The motivation to study this problem is two-fold. On the one hand the Nahm transform has
been successfully applied to find instanton and monopole solutions, which are defined in
real dimensions 4 and 3, respectively. It is then very natural to try to find an analogue for
two-dimensional vortices. On the other hand, vortices in two dimensions are equivalent to
SU(2)-invariant instantons over the product of the elliptic curve and the Riemann sphere,
where theSU(2) action is given simply by the usual one on the sphere. This suggests a relative
four-dimensional approach to the problem. In a related context, the Nahm transform has
been successfully applied to study doubly periodic instantons and their relationship with
Hitchin’s equations[18,19].

Here is a description of the paper. In Section2, we briefly review the Fourier–Mukai
and Nahm transforms for vector bundles over elliptic curves. We recall the preservation of
stability and prove that the constant central curvature condition for a connection (which on
a curve coincides with the Einstein–Hermitian condition) is preserved. Although the latter
seems to be of general knowledge, we have not found it in the literature and hence include
it here since it is relevant for our further study for triples. We follow the approach given in
[13].

In Section3, we review first the basic stability theory for triples. An important feature
is that the stability criterium depends on a real parameter which is typically bounded[7].
We then introduce the Fourier–Mukai transform for triples on elliptic curves and give two
natural approaches for transforming a triple. The first one is based on the absolute Fourier–
Mukai transform acting on the components of the triple. The second approach is based
on a relative Fourier–Mukai transform combined with a dimensional reduction procedure.
We prove that the Fourier–Mukai transform preserves stability of triples for “small” and
“large” values of the stability parameter, providing an isomorphism of moduli spaces. What
happens for other values of the parameter remains to be investigated. We conclude this
section by applying these results to obtain isomorphisms between moduli spaces of stable
SU(2)-equivariant vector bundles.

Finally, in Section4, in parallel with Section3, we develop the formalism for a relative
Nahm transform in the same context. We apply this formalism to transform a solution
to the vortex equations over a triple, regarded as anSU(2)-invariant Einstein–Hermitian
connection on a certainSU(2)-equivariant bundle over the product of the curve with the
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complex projective line. In general, it seems very hard to identify the equation satisfied by
the Nahm transform of a vortex solution, which one would expect to be again the vortex
equation on the transformed triple. We content ourselves with analysing in full detail, the
case of covariantly constant triples, leaving for a future paper the analysis of the general
case. As a byproduct we prove that polystability of triples may not be preserved by the
Fourier–Mukai transform.

In this paper, we work over the field of complex numbersC.

2. Fourier–Mukai and Nahm transforms on elliptic curves

2.1. Fourier–Mukai transform

LetC be an elliptic curve and let̂C = Pic0(C) be its dual variety. AlthoughC andĈ are
isomorphic, it will be convenient to keep a notational distinction between them for the sake
of clarity. OverC × Ĉ we consider the Poincaré bundleP and we denote byπC andπĈ the
canonical projections onto the factorsC andĈ. As it is customary,P is normalized so that
it is trivial over {0} × Ĉ. In [22], Mukai introduced a functor between the bounded derived
categories of coherent sheaves ofC andĈ:

S : D(C) → D(Ĉ).

This functor acts as follows

S(E) = RπĈ,∗(π∗CE⊗ P),

whereE is an object of the derived category andRπĈ,∗ denotes the derived functor ofπĈ,∗.
We need some standard terminology and notation. As usual, we denote bySi(E) the

sheaf defined by thei-th cohomology of the complexS(E), that is,

Si(E) = Hi(S(E)).

WhenE is a single sheaf,Si(E) is the ordinary derived functorRiπĈ,∗(π
∗
CE⊗ P). A

sheafE is said to be WITi if Sj(E) = 0 for every j �= i, andE is called ITi if it is
WITi and its unique transformSi(E) is locally-free. EquivalentlyE is ITi if the co-
homology groupHj(Cξ,E⊗ Pξ) = 0 vanishes for everyj �= i and everyξ ∈ Ĉ, where
Cξ = C × {ξ} andPξ is the restriction ofP to Cξ. In this case, the fibre overξ ∈ Ĉ of
the unique Fourier–Mukai transformSi(E) is canonically isomorphic toHi(Cξ,E⊗ Pξ).
The Fourier–Mukai transformSi(E) of a WITi sheafE will be denoted as usual bŷE.
When there is no need to specify the indexi we shall simply say that a sheaf is WIT
or IT.

One of the most important features of the functorSis that it admits an inversêS : D(Ĉ) →
D(C). That is, there are natural isomorphisms:
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Ŝ ◦ S � IdD(C)

S ◦ Ŝ � IdD(Ĉ).

MoreoverŜ is explicitly given by

Ŝ(F ) = RπC,∗(π∗Ĉ(F )⊗ P∨[1]),

whereP∨ is the dual ofP and [1] is the shift operator.
Let us recall the following well-known fact whose proof relies on the invertibility property

of the Fourier–Mukai transform (see[13], also[10,9]).

Proposition 2.1. If E is a semistable(stable) vector bundle of non-zero degree over an
elliptic curve C, then E isIT and the transform̂E is also semistable(stable).Moreover,E is
IT0 (IT1) if and only ifdeg(E) > 0 (deg(E) < 0).Finally, if E is ITi with Chern character
ch(E) = (r, d) thench(Ê) = ((−1)id, (−1)i+1r) = (−1)i(d,−r).

Remark 2.2. If we take into account that any vector bundleE on an elliptic curve decom-
poses uniquely into a direct sum of semistable bundles we conclude thatE is IT0 (IT1) if
and only if all of its components have positive (negative) degree.

Recall that on an elliptic curveC the moduli spaceMC(r, d) of S-equivalence classes
of semistable bundles of rankr and degreed is isomorphic to the symmetric productShC,
whereh = (r, d) is the greatest common divisor ofr andd. When (r, d) > 1 there are no
stable bundles inMC(r, d). Whenr anddare coprime, all the semistable bundles are stable
andMC(r, d) is isomorphic toC (see[1,27] for details, as well as[9,16]). The Fourier–
Mukai transform is well-behaved with respect to families of stable bundles and therefore
induces morphisms between moduli spaces. In the case of ITi semistable bundles on an
elliptic curve, the Fourier–Mukai transform also preservesS-equivalence. More precisely
if E is an ITi semistable bundle onC, then it is immediate to see that every stable bundle
Ek in the graded object Gr(E) = ⊕kEk with respect to a Jordan–Hölder filtration is ITi.
From this follows that ifE andE′ areS-equivalent ITi bundles, then the transformsÊ and
Ê′ remainS-equivalent. Therefore, we have:

Corollary 2.3. LetMC(r, d) be themoduli space of semistable bundles of rank r andd �= 0.
Then, in the ITi case, the Fourier–Mukai transform induces an isomorphism between the
moduli spaces

S :MC(r, d)
∼→MĈ((−1)id, (−1)i+1r).

Therefore, the Fourier–Mukai transform gives rise to an isomorphism between symmetric
products of elliptic curves.

2.2. Nahm transform

We come now to the definition of the Nahm transform in the context of elliptic curves.
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LetCbe a complex elliptic curve endowed with a flat metric of unit volume. The canonical
spinor bundleS = �0,• T ∗C of Cas a spinc manifold, has a natural splittingS = S+ ⊕ S−
where

S+ = �0,0T ∗C, S− = �0,1T ∗C.

We denote the spinorial connection ofSby∇S .
The dual elliptic curvêC parametrizes the gauge equivalence classes of Hermitian flat line

bundles overC. The Poincaŕe bundleP introduced in Section2.1is endowed with a unitary
connection∇P, such that the restriction of (P,∇P) to the sliceCξ is in the equivalence
class defined byξ ∈ Ĉ. Therefore, for everyξ ∈ Ĉ, we have the Hermitian line bundle
Pξ ≡ P|Cξ

→ C endowed with the flat unitary connection̄∇ξ = ∇|Pξ .
Let us consider a Hermitian vector bundleE→ C with a unitary connection∇. On the

vector bundleE⊗ Pξ, we have the connection∇ξ = ∇ ⊗ 1+ 1⊗ ∇̄ξ. Therefore, we have
the family of coupled Dirac operators

Dξ : �0(C, S+ ⊗ E⊗ Pξ) → �0(C, S− ⊗ E⊗ Pξ).

It follows from the Atiyah–Singer Theorem for families that the difference bundle of the
family of Dirac operatorsD parametrized bŷC is a well defined object Ind(D) in K-theory
which is called the index ofD. Moreover, if either one of{KerDξ} or {CokerDξ} has
constant rank, then KerD and CokerD are vector bundles over̂C and one has that

Ind(D) = [KerD] − [CokerD] ∈ K(Ĉ).

Definition 2.4. Let (E,∇) be a pair formed by a Hermitian vector bundleE overC and
a unitary connection∇ on E. We say that (E,∇) is an IT (index Theorem) pair if either
CokerD = 0 or KerD = 0. In the first case we say that (E,∇) is an IT0-pair whereas in
the second we call it an IT1-pair. The transformed bundle of an ITi-pair is the vector bundle
Ê = (−1)iInd(D) → Ĉ.

Remark 2.5. From a more formal point of view, the study of the family of Dirac operators
D can be approached via the techniques developed by Bismut in his proofs of the Atiyah–
Singer index Theorem for families[5]. In that framework one has to consider the fibration
πĈ : C × Ĉ→ Ĉ as a family of spinc manifolds, whose fibres are preciselyCξ. The vector
bundle of relative spinors is identified withπ∗CS and we can consider then the coupled
relative Dirac operator

D : �0(π∗C(S+ ⊗ E)⊗ P) → �0(π∗C(S− ⊗ E)⊗ P),

whose restriction toCξ is Dξ.

The Nahm transform fromC to Ĉ is a procedure which transforms Hermitian vector
bundles with unitary connections onC into Hermitian vector bundles with unitary connec-
tions onĈ. The main idea relies on the fact that the index (minus the index) of the family
D is a finite rank vector bundle whenever CokerD = 0 (KerD = 0). In certain cases, this
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is a consequence of a vanishing Theorem of Bochner type. Before doing so, we introduce
some more notation and recall the Weitzenböck formula.

We recall that the Poincaré line bundleP→ C × Ĉ is a holomorphic Hermitian line
bundle and that the unitary connection∇P is compatible with the holomorphic structure. It
is also known that a Hermitian vector bundleE→ Cwith a unitary connection∇ is naturally
endowed with a holomorphic structure sinceF∇ is of type (1,1) (see[12, 2.1.53]). Moreover,
the spinc Dirac operatorDξ coincides with the Dolbeault–Dirac operator ofE⊗ Pξ

Dξ =
√

2(∂̄∗E⊗Pξ + ∂̄E⊗Pξ ),

where∂̄E⊗Pξ is the Cauchy-Riemann operator ofE⊗ Pξ. SinceC is a one-dimensional
complex manifold the Dolbeault–Dirac operatorDξ is reduced to

Dξ =
√

2∂̄E⊗Pξ : �0(Cξ,E⊗ Pξ) → �0,1(Cξ,E⊗ Pξ).

As a consequence of the Kähler identities (see[12]), the Weitzenb̈ock formula for the
Dirac operatorDξ can be expressed as

D∗ξDξ = 2∂̄∗E⊗Pξ ∂̄E⊗Pξ = ∇∗ξ∇ξ − i�F∇ ⊗ IdPξ , (2.1)

wherei�F∇ is the Hermitian endomorphism ofE obtained by contractingiF∇ with the
Kähler form. We have the following vanishing Theorem.

Theorem 2.6. Let (E,∇) be a pair formed by a Hermitian vector bundle over C and a
unitary connection.

(i) If i�F∇ is non-negative and there existsx ∈ C such thati�F∇ (x) > 0 then(E,∇) is
an IT0-pair.

(ii) If i�F∇ is a non-positive and there existsx ∈ C such thati�F∇ (x) < 0 then(E,∇)
is anIT1-pair.

Proof. Let us suppose thati�F∇ < 0. If we apply the Weitzenbock formula(2.1) to a
sections ∈ �(C,E⊗ Pξ) and we integrate overCwe obtain

‖Dξs‖2 = ‖∇ξs‖2−
∫
C

〈i�F∇s, s〉ω ≥ 0, (2.2)

whereω is the Riemannian volume element ofC. From relation(2.2)we obtain

Dξs = 0⇐⇒
{

(a)∇ξs = 0

(b) 〈i�F∇s, s〉 = 0.

By (a) one sees that〈s, s〉 is constant; Therefore, if there existsx ∈ C such thati�F∇ (x) < 0,
then (b) implies thats(x) = 0 and since〈s, s〉 is constant, one hass = 0 and (ii) is proved.
By Serre duality, we haveH1(C,E) � H0(C,E∨)∗, and hence the first statement follows
from the second one. �
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We can endow the transformed vector bundle of an IT-pair with a Hermitian metric and a
unitary connection in a natural way. This follows from a rather straightforward application
of the theory for families. We briefly recall the main facts of this construction following the
approach of[12, Chapter 3]and[5].

LetH∞± be the space ofC∞ sections of the vector bundleπ∗C(S± ⊗ E)⊗ P overC × Ĉ.
We may regardH∞± as the space ofC∞ sections over̂C of the infinite dimensional fibre
bundlesH∞± . The fibresH∞±, ξ are the sets ofC∞ sections overCξ of π∗C(S± ⊗ E)⊗ P.
Sinceπ∗C(S± ⊗ E)⊗ P is a Hermitian vector bundle, and the fibresCξ of the projection
πĈ : C × Ĉ→ Ĉ carry a natural volume elementω; we can define the Hermitian metric

〈h1, h2〉πĈ =
∫
Cξ

〈h1, h2〉ω, (2.3)

onH∞±, ξ, We then have the Hilbert bundlesH± whose fibresH±, ξ are theL2-completion
ofH∞±, ξ with respect to this metric.

Let ∇1 be the connection onπ∗C(S± ⊗ E)⊗ P obtained from∇S , ∇ and∇P. Now we
define a connectioñ∇ onH∞± as follows

∇̃Dh = ∇1
DHh, for every D ∈ X(Ĉ), h ∈ H∞

± ,

whereDH is the natural lift of the vector fieldD from Ĉ to C × Ĉ. It is easy to check that
∇̃ is a flat connection.

If (E,∇) is an ITi-pair, then the regularity Theorem for elliptic operators implies thatÊ

is, according to the parity of the indexi, a subbundle ofH∞± , and hence there is a naturally
induced metric on̂E. We also have a natural unitary connection∇̂ induced by the ambient
connection∇̃ and the orthogonal projectionP ontoÊ, that is

∇̂ = P ◦ ∇̃.

Let us recall that Hodge theory provides an explicit formula for the projectorP. Indeed, if
(E,∇) is IT0 then for everyξ ∈ Ĉ, we have

Pξ = Id−D∗ξGξDξ,

whereGξ is the Green operator ofDξD
∗
ξ . A similar formula holds in the case of an IT1 pair.

Definition 2.7. Let (E,∇) be an IT-pair. The pair (̂E, ∇̂) is called the Nahm transform of
(E,∇) and is denoted byN(E,∇).

Remark 2.8. If ∇ and∇′ are gauge equivalent unitary connections, it follows from the
very definition of the Nahm transform that∇̂ and ∇̂′ are also gauge equivalent unitary
connections.

The following is an easy consequence of the flatness of∇̃.
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Proposition 2.9. Let (Ê, ∇̂) be the Nahm transform of anITi pair. The curvature of̂∇ is
given by

F ∇̂ = P ◦ (∇̃P ∧ ∇̃P) ◦ P.

Moreover, we can express the curvature in terms of the Green operator as follows

F ∇̂ = P ◦ (∇̃D∗ ◦G ∧ ∇̃D) ◦ P, if E is IT0.

A similar expression holds in the case of anIT1 pair.

We study now the Nahm transform of a connection with constant central curvature. Since
all the line bundlesPξ are flat they are trivial as smooth bundles and we may consider the
connection∇P of the Poincaŕe line bundle as a family of connections̄∇ξ on the trivial line
bundle. In the same way ifE→ C is a Hermitian vector bundle with a unitary connection∇,
then we have a family of connections∇ξ onE and the family of Dolbeault–Dirac operators
Dξ considered above act now in the same vector bundle

∂̄∇ξ : �0(E) → �0,1(E).

Using a flat holomorphic coordinatez onC and the flat coordinatew which it induces on
Ĉ, we have

∂̄∇ξ = ∂̄∇ + πwdz̄⊗ IdE,

which clearly shows that this family depends holomorphically onw ∈ Ĉ.
The triviality of the holomorphic tangent bundle ofC allows to identify�0,1(C) with

�0(C) by contraction with a global anti-holomorphic vector fieldV̄ . Since the metric onC
is flat, we can choosēV such that it is a parallel vector field whose pointwise norm is equal
to 1. We define the operator

Dξ = iV̄ ∂̄
∇ξ : �0(E) −→ �0(E).

Lemma 2.10.The curvature of∇ξ is related to the operatorDξ by the formula

i�F∇ = i�F∇ξ = 2[Dξ,D
∗
ξ ].

Let us recall that the flat metric ofC induces in a natural way a flat metric onĈ. In the
following Theorem we consider unitary connections of constant central curvature onCand
Ĉ with respect to these metrics.

Theorem 2.11. Let∇ be a connection on E with constant central curvature with factor
λ ∈ R, that isi�F∇ = λ IdE, whereλ = 2πµ(E) andµ(E) is the slope of E.
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1. If deg(E) > 0 then (E,∇) is an IT0 pair and ∇̂ is a connection on̂E with constant
central curvature with factor̂λ = −2π/µ(E).

2. If deg(E) < 0 then (E,∇) is an IT1 pair and ∇̂ is a connection on̂E with constant
central curvature with factor̂λ = −2π/µ(E).

Proof. We shall only prove the first case since the second one can be dealt with in a similar
way.

It is well-known ([11,25]) that since∇ has constant central curvatureE must be
polystable. The condition deg(E) > 0 implies, due toProposition 2.1, that (E,∇) is an
IT0 pair. All the operatorsDξ act on�0(E), Therefore, the bundle of kernelsÊ is a finite
rank subbundle of the trivial Hilbert bundleH+ → Ĉ introduced above andP : H+ → Ê

is the orthogonal projection. Then, we have

∇̂ = P ◦ ∇̃,

where∇̃ is the natural flat connection onH+. Taking into account the above identifications,
the curvature of the connection̂∇ of Ê, given inProposition 2.9, can be expressed as

F ∇̂ = Pξ ◦ (∇̃D∗ξ ◦Gξ ∧ ∇̃Dξ) ◦ Pξ, (2.4)

whereGξ is the Green operator ofDξD∗ξ .
As we mentioned above, we can choose a flat holomorphic coordinatezonC such that

the Kähler form is expressed as

ω = i

2
dz ∧ dz̄.

Therefore, locally we may takēV = ∂/∂z̄. This implies that

Dξ = D0+ πwIdE.

It is clear now that̃∇Dξ = πdw⊗ IdE and∇̃D∗ξ = πdw̄⊗ IdE which upon substitution
in (2.4)gives

F ∇̂ = π2Pξ ◦Gξ ◦ Pξ dw̄ ∧ dw,

where we have used the fact that the identity operator commutes with the Green’s operator
Gξ. We then have to prove that for everyu ∈ KerDξ one has

Gξu = αu+ v,

whereα is a constant andv ∈ (KerDξ)⊥. To see this suppose that

Gξu = u′ + v for u′ ∈ KerDξ and v ∈ (KerDξ)
⊥.
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Operating byG−1
ξ = DξD∗ξ we obtain

u = DξD
∗
ξu
′ +DξD

∗
ξ v. (2.5)

But by hypothesis [D0,D∗0] = λ/2 IdE, Therefore, [Dξ,D
∗
ξ ] = λ/2 IdE and, sinceDξu

′ =
0, Eq.(2.5)becomes

u− λ

2
u′ = DξD

∗
ξ v.

NowDξD∗ξ v ∈ (KerDξ)⊥, since for everyu1 ∈ KerDξ,

(DξD
∗
ξ v, u1) =

(
λ

2
v+D∗ξDξv, u1

)
=
(
λ

2
v, u1

)
+ (Dξv,Dξu1) = 0.

Thusu− λ/2u′ ∈ KerDξ ∩ (KerDξ)⊥ = {0}. Henceu′ = 2λ−1u, concluding that

F ∇̂ = −2π2λ−1dw ∧ dw̄ = − (2π)2

iλ

i

2
dw ∧ dw̄ = − (2π)2

iλ
ω̂ ⊗ IdÊ,

whereω̂ is the K̈ahler form ofĈ. Thereforei�F ∇̂ = −2π/µ(E) IdÊ as required. �

2.3. Compatibility between the Fourier–Mukai and Nahm transforms, functoriality and
invertibility

LetE→ C be a Hermitian vector bundle endowed with a unitary connection∇. As we
have seen the spinc Dirac operatorDξ is identified with the Dolbeault–Dirac operator of
E⊗ Pξ. Hodge theory and the Dolbeault isomorphism give that

KerDξ � H0(Cξ,E⊗ Pξ) (2.6)

CokerDξ � H1(Cξ,E⊗ Pξ). (2.7)

If we suppose thatE is ITi with respect to the Fourier–Mukai transformS, then the
isomorphisms(2.6) and (2.7)mean that (E,∇) is an ITi-pair with respect to the Nahm
transform. By[2, Theorem 2]or [12, Theorem 3.2.8], we have a naturalC∞ vector bundle
isomorphism induced by Hodge theory

φE : Ê
∼→Si(E).

Moreover, we have the following.

Theorem 2.12. Let E1, E2 be Hermitian vector bundles over C endowed with unitary
connections∇1, ∇2 such that(E1,∇1), (E2,∇2) are ITi-pairs with respect to the Nahm
transform. Then, we have
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1. The connectionŝ∇1, ∇̂2 are compatible with the holomorphic structures ofSi(E1),
Si(E2), respectively.

2. For every holomorphic morphism. : E2 → E1 we have an induced holomorphic mor-
phismN(.) : Ê2 → Ê1 and a commutative diagram

(2.8)

Proof. The Poincaŕe bundleP→ C × Ĉ is a holomorphic line bundle and the connection
∇P is compatible with the holomorphic structure. This implies that the families of Dirac
operatorsDξ, D∗ξ vary holomorphically withξ ∈ Ĉ. The first statement follows now by a
standard argument concerning holomorphic families, see[12, Theorem 3.2.8].

Since. is holomorphic, the second statement follows immediately in the IT0 case,
because the fibers of the Nahm transforms are given by the kernels of the Cauchy-Riemann
operators. In the IT1 case the fiberŝE2,ξ, Ê1,ξ of the Nahm transform atξ ∈ Ĉ are given by
the cokernels of the Dirac operatorsD2,ξ, D1,ξ and we have

CokerD2,ξ = KerD∗2,ξ = Ker ∂̄∇
∗
2,ξ

CokerD1,ξ = KerD∗1,ξ = Ker ∂̄∇
∗
1,ξ

Now. induces a morphism from Ker̄∂∇
∗
2,ξ to�0,1(C,E1⊗ Pξ) and composing it with the

orthogonal projection onto Ker̄∂∇
∗
1,ξ we get a morphism

N(.)ξ : Ker ∂̄∇
∗
2,ξ → Ker ∂̄∇

∗
1,ξ

which by Hodge theory is the unique one that renders commutative the following diagram

SinceS(.) is a vector bundle morphism andφE2,φE1 areC∞ vector bundle isomorphisms,
we conclude thatN(.) is also aC∞ vector bundle morphism and we have the commutative
diagram(2.8). Moreover,S(.) is a holomorphic morphism and by the first part of the
Theorem, we have the compatibility between the connections∇̂2, ∇̂1 and the holomorphic
structures ofS(E2), S(E1), respectively. These facts imply thatN(.) is a holomorphic
morphism. �

If h is an Hermitian metric on aC∞ vector bundleE thenA(E, h) will denote the space
of unitary connections which are compatible withh. On the other hand we will denote by
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C(E) the set of holomorphic structures onE. It is well known that there is an identification

A(E, h)
∼→C(E)

which associates to (E,∇) the holomorphic vector bundleE = (E, ∂̄∇ ), the inverse cor-
respondence being given by the map which associates to every holomorphic bundle
E = (E, ∂̄∇ ) the unique connection∇ compatible with the complex structure and the Her-
mitian metric. We can rephrase the preceding Theorem by saying that the Nahm transform
and the Fourier–Mukai transform are compatible with this identification. That is to say, the
following diagram is commutative

The curveC and its dual elliptic curvêC are in a symmetrical dual relation with one
another (see[12, Section 3.3.2]). That is,C parametrizes the flat Hermitian line bundles

overĈ, thereforeˆ̂
C � C. Moreover, the restriction of the dual of the Poincaré line bundle

P∨ to the sliceĈx endowed with the restriction of the connection∇P∨ is isomorphic, as
a Hermitian line bundle with connection, to the flat Hermitian bundle corresponding tox.
We can hence apply the Nahm construction in order to transform Hermitian vector bundles
with connection over̂C into Hermitian vector bundles with connection overC.

Let∇ be a connection with constant central curvature different from zero on a bundleE
overC, and letE = (E, ∂̄∇ ) be the corresponding holomorphic vector bundle; then deg(E) �=
0. The isomorphisms(2.6) and (2.7)imply thatE is ITi with respect to the Fourier–Mukai
transform. Let̂E = Si(E) be its unique transform. It is well known, see[22], thatÊ is IT1−i
and that there is an isomorphism of holomorphic vector bundles

ˆ̂E = Ŝ1−i
(Si(E)) � E. (2.9)

By Theorem 2.11̂∇ is a constant central curvature connection onÊ, and hence we can

apply to it the Nahm transform to obtain (ˆ̂E, ˆ̂∇). By (2.9)we have an isomorphism

ˆ̂E � E.

Moreover,Theorem 2.12implies that ˆ̂∇ is compatible with the holomorphic structure of
E, and therefore by the results of Donaldson[11], which in particular extend the theorem
of Narasimhan and Seshadri[25] to genus one, we have the following.

Theorem 2.13. If ∇ is a connection with constant central curvature different from zero on
E then∇̂ is a connection with constant central curvature on the bundleÊ, and there is a
natural isomorphism

( ˆ̂E, ˆ̂∇) � (E,∇).
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LetAc(E, h) ⊂ A(E, h) be the subspace of constant central curvature connections and
let Cps(E) ⊂ C(E) be the subspace of polystable holomorphic structures on theC∞ bundle
E. We have the Donaldson–Narasimhan–Seshadri correspondence (the curve version of the
Hitchin–Kobayashi correspondence)

Ac(E, h)
D−→ Cps(E).

The content of the preceding Theorem can be summarized by saying that the Nahm trans-
form and the Fourier–Mukai transform are compatible with the Donaldson–Narasimhan–
Seshadri correspondence. That is, the following diagram is commutative

These correspondences descend to the quotients by the corresponding gauge groups,
giving a commutative diagram of correspondences between the associated moduli spaces.
First, the Donaldson–Narasimhan–Seshadri correspondence is well known to descend to
moduli spaces, see[20, Chapter VII]. The descent for the Nahm transform follows from
Remark 2.8and for the Fourier–Mukai transform is a consequence of its functoriality.

3. Fourier–Mukai transforms for holomorphic triples

3.1. Holomorphic triples

A holomorphic triple over a smooth connected curveC is by definition a tripleT =
(E1, E2,.) whereEi, i = 1,2 are holomorphic vector bundles and. ∈ HomC(E2, E1).
Let ni anddi be the rank and degree ofEi for i = 1,2. We say that the tripleT is of type
(n1, n2, d1, d2). There is a notion of stability for triples which depends on a real parameter
α (see[7] for details). Theα-degree ofT is defined by

degα(T ) = deg(E1⊕ E2)+ n2α

and theα-slope is by definition

µα(T ) = degα(T )

n1+ n2
.

The stability condition is defined in a similar way as the slope stability for vector bundles,
precisely:T = (E1, E2,.) is α-stable (respectivelyα-semistable) if for every non-trivial
subtripleT ′ = (E′1, E

′
2,.

′) we have

µα(T ′) < µα(T ) (respectively≤).
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Here a subtriple means a tripleT ′ = (E′1, E
′
2,.

′) and injective homomorphismsγ1, γ2 of
sheaves such that the following diagram commutes

Most of the properties which are valid for stable bundles carry along to stable triples.
We denote the moduli space of S-equivalence classes ofα-semistable triples of type
(n1, n2, d1, d2) by Nα(n1, n2, d1, d2) or simply byNα if there is no need to specify the
topological invariants.Ns

α(n1, n2, d1, d2) denotes the moduli space ofα-stable triples.
An important feature is that the stability condition gives bounds on the range of the param-

eterα. More precisely, ifn1 �= n2 andT = (E1, E2,.) is α-stable of type (n1, n2, d1, d2)
then necessarily

0 ≤ αm ≤ α ≤ αM

whereαm = µ1− µ2 andαM = (1+ (n1+ n2)/(|n1− n2|))(µ1− µ2) (see[7]). In the
casen1 = n2, α ranges in [αm,∞); we will write in this case,αM = ∞. The interval
(αm, αM) is divided into a finite number of subintervals determined by values of the param-
eter for which strict semistability may occur. The stability criteria for two values ofα lying
between two consecutive critical values are equivalent (and therefore the corresponding
moduli spaces are isomorphic). As in[8] we shall denote byαL the largest critical value,
in particular whenαL < α < αM all the moduli spacesNα are isomorphic.

We use freely the terminology and results of[7]. Corollary 3.6, Proposition 3.17, Corol-
laries 3.19 and 3.20 and Lemma 4.6 of[7] are particularly useful for the understanding of
this paper.

Now we recall how holomorphic triples on an elliptic curveC are related toSU(2)-
equivariant bundles on the elliptic surfaceC × P1. In what follows we shall only deal with
SU(2)-equivariant bundlesE which admit aC∞ SU(2)-equivariant decomposition of the
type

E = p∗E1⊕ (p∗E2⊗ q∗H⊗2), (3.1)

wherep, q are the canonical projections ofC × P1 onto its factors andH is theC∞ line
bundle overP1 with first Chern number equal to 1.

In the following, if not otherwise stated, anSU(2)-equivariant bundle will always mean
an holomorphic bundle overC × P1, SU(2)-equivariant, of type given in(3.1).

We shall need the following formulation of Proposition 2.3 in[7].

Proposition 3.1. Let C be a smooth connected curve, then

(i) There is a one-to-one correspondence betweenSU(2)-equivariant holomorphic vector
bundles E of type(3.1)and holomorphic extensions overC × P1 of the form

0→ p∗E1 → E→ p∗E2⊗ q∗OP1(2)→ 0
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whereE1, E2 are holomorphic vector bundles on C. HereOP1(2) is the unique line
bundle of degree 2 overP1.

(ii) There is a(non-unique) functorial correspondence between such extensions and ele-
ments ofHomC(E2, E1) and it is given by a functorial isomorphism

σC : Ext1
C×P1(p∗E2⊗ q∗OP1(2), p∗E1) � HomC(E2, E1)

induced by the choice of a trace isomorphismtr : H1(P1,OP1(−2))→∼
C.

Proof. A proof of (i) and (ii) can be found in[14, Proposition 3.9]and[7, Proposition 2.3].
We recall that there is a natural isomorphism (see for instance[15])

Ext1
C×P1(p∗E2⊗ q∗OP1(2), p∗E1)

∼→HomD(C×P1)(p
∗E2⊗ q∗OP1(2), p∗E1[1]).

(3.2)

Now we have

HomD(C×P1)(p
∗E2⊗ q∗OP1(2), p∗E1[1])

∼→HomD(C×P1)(p
∗E2, p

∗E1⊗ q∗OP1(−2)[1])

∼→HomD(C)(E2,Rp∗(p∗E1⊗ q∗OP1(−2))[1])

∼→HomD(C)(E2, E1⊗ Rp∗(q∗OP1(−2))[1])

∼→HomD(C)(E2, E1⊗C R�(P1,OP1(−2))[1])

∼→HomD(C)(E2, E1⊗C H1(P1,OP1(−2)))

where the second isomorphism is adjunction between direct and inverse images, the third is
the projection formula, the fourth is base-change in the derived category and the last is due to
the fact that sinceH0(P1,OP1(−2))= 0, thenR�(P1,OP1(−2))

∼→H1(P1,OP1(−2))[−1]
in the derived category. Composition with a trace map tr :H1(P1,OP1(−2))→∼

C gives
the isomorphism

σC : Ext1
C×P1(p∗E2⊗ q∗OP1(2), p∗E1) � HomC(E2, E1)

of the statement. �

Remark 3.2. We can describe quite easily in an explicit form the inverse isomor-
phismσ−1

C . The inverse of the trace tr−1 : C→∼H1(P1,OP1(−2)) defines an element of
H1(P1,OP1(−2)) and via the isomorphism

HomD(P1)(OP1(2),OP1[1]) →∼ Ext1
P1(OP1(2),OP1)

∼→Ext1
P1(OP1,OP1(−2))

→∼ H1(P1,OP1(−2))

induces a morphism tr−1 : OP1(2)→ OP1[1] in the derived category. Thus, given a
morphism. : E2 → E1, one finds thatσ−1

C (.) is the element of Ext1
C×P1(p∗E2⊗
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q∗OP1(2), p∗E1) corresponding to the morphism

p∗(.)⊗ q∗(tr−1) : p∗E2⊗ q∗OP1(2)→ p∗E1[1]

by the isomorphism(3.2).

Remark 3.3. Two triples (E1, E2,.) and (E1, E2, λ.) (λ �= 0) define different ex-
tensions though the same holomorphic bundle. However, they define differentSU(2)-
equivariant holomorphic vector bundles (see[13,7]), because extensions correspond to
SU(2)-equivariant holomorphic vector bundles and not merely to holomorphic vector bun-
dles.

The correspondence inProposition 3.1also preserves stability. Letωα be the K̈ahler
class overX× P1 defined byωα = α/2p∗ωC + q∗ωP1, with α ∈ R+. The following result
is proved in[7].

Theorem 3.4. Let T = (E1, E2,.) be an holomorphic triple over a smooth connected
curve C and let E be the holomorphicSU(2)-equivariant bundleC × P1 defined in
Proposition 3.1. Then, ifE1 andE2 are not isomorphic, T is α-stable if and only if E
is slope-stable with respect to the K¨ahler formωα. In the caseE1 � E2 then T isα-stable
if and only if. �= 0,E1 � E2 is stable and E decomposes as a direct sum

E � (p∗E1⊗ q∗OP1(1))⊕ (p∗E2⊗ q∗OP1(1)).

Remark 3.5. The proof of statement (ii) inProposition 3.1that we have just given above
shows that the correspondence between triples and equivariant bundles also extends to
families. Indeed, families of (stable) triples correspond functorially to families ofSU(2)-
equivariant (stable) bundles. This implies that the moduli spaceNα of α-stable triples (of a
given topological type) over an elliptic curve corresponds, via the canonical isomorphism of
Proposition 3.1, to a component of the moduli spaceMSU(2)

α of SU(2)-equivariant bundles
(defined by the lift of theSU(2) action determined by(3.1)) stable with respect to the K̈ahler
formωα. Therefore, we have a canonical identification

Nα
∼→MSU(2)

α .

3.2. Fourier–Mukai transforms for triples

We begin by briefly recalling the main properties of relative Fourier–Mukai transform
in the case of a trivial elliptic fibration over the projective line.

The corresponding functor is then

SP1 : D(C × P1) → D(Ĉ × P1)

SP1(−) = RπĈ×P1,∗(π
∗
C×P1(−)⊗ π∗

C×Ĉ(P))
(3.3)

whereπC×P1,πĈ×P1 andπC×Ĉ are the canonical projections ofC × Ĉ × P1 onto its factors.
As in Section2.1, this functor is invertible (see for instance[16,23]).
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We also know that the relative Fourier–Mukai transform is compatible with base-change
in the derived category[16]. In particular, for vector bundlesE in D(C) andF in D(P1) the
base change isomorphism can be described as follows. Let us denote by ˆp, q̂ the projections
of Ĉ × P1 onto its factors. Then

SP1(p∗E⊗ q∗F )
∼→RπĈ×P1,∗(π

∗
C×P1(p∗E⊗ q∗F )⊗ π∗

C×Ĉ(P))

∼→RπĈ×P1,∗(π
∗
Ĉ×P1(q̂∗F )⊗ π∗

C×Ĉ(π∗CE⊗ P))

∼→RπĈ×P1,∗(π
∗
C×Ĉ(π∗CE⊗ P))⊗ q̂∗(F )

∼→p̂∗(RπĈ,∗(π
∗
C(E)⊗ P))⊗ q̂∗(F ) = p̂∗(S(E))⊗ q̂∗(F ) (3.4)

where the second isomorphism is due toq ◦ πC×P1 = q̂ ◦ πĈ×P1 andp ◦ πC×P1 = πC ◦
πĈ×Ĉ, the third is the projection formula and the forth is base change in the derived category.
We also see that given morphisms. : E2 → E1 of vector bundles onC andγ : F2 → F1
of vector bundles onP1, then the morphismSP1(p∗.⊗ q∗γ) is identified withp̂∗(S(.))⊗
q̂∗γ, that is, the following diagram is commutative

(3.5)

where the vertical isomorphisms are the base change isomorphisms(3.4) we have just
considered.

We shall give two natural definitions of the Fourier–Mukai transform of a triple and show
that they are equivalent under the isomorphism given in (ii) of Proposition 3.1. First we
must ensure that the transform of a triple is again a triple.

Definition 3.6. The tripleT = (E1, E2,.) is ITi if both bundlesE1, E2 are ITi with the
same index i.

Definition 3.7 (I). Let T = (E1, E2,.) be an ITi triple. The Fourier–Mukai transform of
T is defined as the triplêT = (Si(E1),Si(E2),Si(.)). We shall writeT̂ = (Ê1, Ê2, .̂) for
the transformed triple.

Since a tripleT corresponds exactly to anSU(2)-equivariant bundleE onC × P1, this
suggests another definition of the Fourier–Mukai transform of an ITi triple as the triple
associated to the transform of the bundleEwith respect to the relative transformSP1. This
observation leads us in a natural way to consider a relative version of the Nahm transform,
an argument that will be pursued in the next section. Note that in order that the relative
transform of the bundleE consists of a single sheaf, we should ensure thatE is ITi. This is
achieved by the following Proposition whose proof is a straightforward consequence of the
base change property of the Fourier–Mukai transform.
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Proposition 3.8. If E1 andE2 are ITi-bundles with respect toS (with the same index i),
then E isITi with respect toSP1 and its transformÊ sits in an exact sequence of the type

0→ p̂∗Ê1 → Ê→ p̂∗Ê2⊗ q̂∗OP1(2)→ 0.

Therefore,Ê is anSU(2)-equivariant bundle on̂C × P1.

Now we can define.

Definition 3.9 (II). We define the Fourier–Mukai transform of a ITi tripleT = (E1, E2,.)
as the triple associated to the transformÊ = Si

P1(E) of the associatedSU(2)-equivariant
and ITi bundleE onC × P1.

It remains to check thatDefinitions 3.7 and 3.9are compatible.

Proposition 3.10. Let T be anIT triple and let E be the corresponding invariant bundle
onC × P1, then the (absolute) Fourier–Mukai transform̂T in Definition 3.7corresponds
to the triple given by the transform̂E of Definition 3.9under the isomorphism given in
Proposition 3.1. In other words, we have the following commutative diagram

where the vertical rows are the isomorphisms introduced inProposition 3.1and the hori-
zontal isomorphisms are induced from the relative and absolute Fourier–Mukai transforms.

Proof. Given a morphism. : E2 → E1, we know byRemark 3.2, that σ−1
C (.) is the

element of Ext1
C×P1(p∗E2⊗ q∗OP1(2), p∗E1) corresponding by(3.2) to the morphism

p∗(.)⊗ q∗(tr−1) : p∗E2⊗ q∗OP1(2)→ p∗E1[1].

Now, by (3.5), SP1(σ−1
C (.)) is the element of Ext1

Ĉ×P1(p̂∗S(E2)⊗ q̂∗OP1(2), p̂∗S(E1))
corresponding by(3.2) to the morphism

p̂∗(S(.))⊗ q̂∗(tr−1) : p̂∗S(E2)⊗ q̂∗OP1(2)→ p̂∗S(E1)[1]

which, again byRemark 3.2, corresponds toσ−1
Ĉ

(S(.)). �

Remark 3.11. In order to ensure that the Fourier–Mukai transform gives rise to morphisms
between moduli spaces of triples one should check that the transform preserves families
of (IT) triples. This can be checked directly as in the usual case of families of sheaves,
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alternatively one can useRemark 3.5and note that the Fourier–Mukai transform is well-
behaved with respect to families and therefore induces morphisms between the moduli
spaces ofSU(2)-equivariant sheaves.

3.3. Preservation of stability for smallα

LetNs

α+m
(n1, n2, d1, d2) be the moduli space ofα+m-stable triples withα+m = αm + ε such

thatε > 0 and (αm, α+m] does not contain any critical value. (We assume thatd1/n1 ≥ d2/n2,
since this is a necessary condition for the moduli space not to be empty.) One has the
following (Proposition 3.23 in[7]).

Proposition 3.12. If a triple T = (E1, E2,.) is α+m-stable, E1 andE2 are semistable.
Conversely, if E1 andE2 are stable and. �= 0 thenT = (E1, E2,.) is α+m-stable.

Proposition 3.13. If (n1, d1) = 1, (n2, d2) = 1 andd1/n1 > d2/n2, the moduli space of
stable triplesN s

α+m
is isomorphic to aPN -fibration overMC(n1, d1)×MC(n2, d2),where

N = n2d1− n1d2− 1.

Proof. By Proposition 3.12,N s

α+m
is the projectivization of a Picard sheaf onMC(n1, d1)×

MC(n2, d2) (Corollary 6.2 in [8]), which in this case is a vector bundle with fibre
H0(C,E∗2 ⊗ E1) over (E1, E2), sinceH1(C,E∨2 ⊗ E1) � H0(C,E∨1 ⊗ E2)∗ = 0. �

Given an ITi triple T = (E1, E2,.) with transformT̂ = (Ê1, Ê2, .̂) we denote bŷαm
the minimum value of the stability parameterα̂ with the type (n̂1, n̂2, d̂1, d̂2) defined byT̂ .
As above,α̂+m is any real number such that the interval (α̂m, α̂

+
m] does not contain critical

values.

Theorem 3.14. Let T = (E1, E2,.) be a α+m-stable triple such that(n1, d1) = 1,
(n2, d2) = 1 and d1d2 > 0 (this forces. �= 0). Then the Fourier–Mukai transform̂T =
(Ê1, Ê2, .̂) is α̂+m-stable. The result also holds in the converse direction with the obvious
modifications on the hypotheses.

Proof. By Proposition 3.12, we have thatE1 andE2 are both semistable. Moreover,E1 and
E2 are stable due to the conditions on the rank and degree. Thus in the tripleT̂ = (Ê1, Ê2, .̂)
both bundles are stable. ByProposition 3.12again we conclude that the triplêT is alsoα+m-
stable. The proof of the converse is identical.�

Corollary 3.15. Keeping the conditions stated in the previous Theorem and assuming ad-
ditionally thatd1/n1 > d2/n2, then the Fourier–Mukai transform induces an isomorphism

S : N s

α+m
∼→N s

α̂+m
.

In other words, the Fourier–Mukai transform induces an isomorphism between theP
N -

fibrations described inProposition 3.13.
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3.4. Preservation of stability for largeα

Recall thatαL is the largest critical value in the interval (αm, αM). If αL < α <

αM the stability condition does not vary in this range, and we can then denote by
N s

α−
M

(n1, n2, d1, d2) the moduli space ofα-stable triples for any valueα ∈ (αL, αM).

The relationship between the stability of the triple and that of the involved bundles is
given by the following Proposition ([8, Propositions 7.5 and 7.6]).

Proposition 3.16. LetT = (E1, E2,.) be anα-semistable triple for someαL < α < αM ,
and let us suppose thatn1 > n2. Then T defines an extension of the form

0→ E2
.→E1 → F → 0 (3.6)

with F locally free, andE2 and F are semistable. Conversely, let T = (E1, E2,.) be a
triple defined by a non trivial extension of the form(3.6), with F locally free. IfE2 and F
are stable then T isα-stable forαL < α < αM .

From this, we have the following result (Theorem 7.7 in[8]).

Theorem 3.17. Let n1 > n2, d1/n1 > d2/n2, (n1− n2, d1− d2) = 1 and (n2, d2) = 1.
Then the moduli spaceN s

α−
M

(n1, n2, d1, d2) is smooth of dimensionn2d1− n1d2+ 1 and

it is isomorphic to aPN -fibration overMC(n2, d2)×MC(n1− n2, d1− d2), whose fibre
over the point(E2, F ) is given byPH1(C,E2⊗ F∗), andN = n2d1− n1d2− 1.

Remark 3.18. The casen1 < n2 reduces to the situation inTheorem 3.17by considering
the dual triple.

We prove now that the Fourier–Mukai transform preserves stability for “large” values of
the parameterα.

Theorem3.19.LetT = (E1, E2,.)beanα-stable triple such that(n1− n2, d1− d2) = 1,
(n2, d2) = 1,n1 �= n2 andαL < α < αM .Suppose also thatd1 > 0,d2 > 0andd1− d2 >

0 (respectivelyd1 < 0, d2 < 0 andd1− d2 < 0); then T isIT0 (respectivelyIT1) and the
transformed tripleT̂ = (Ê1, Ê2, .̂) is α̂-stable forα̂ ∈ (α̂L, α̂M) whereα̂L andα̂M are the
values corresponding to the transformed tripleT̂ .

Proof. We prove the IT0 case, the proof of the other case is entirely similar. Without loss of
generality we may assumen1 > n2. By Proposition 3.16the map. : E2 → E1 is injective
and the quotient sheafF in 0→ E2 → E1 → F → 0 is locally free. Moreover,E2 andF
are stable, and hence IT0, from which it follows thatE1 is IT0. Transforming the above
sequence we get

0→ Ê2 → Ê1 → F̂ → 0.
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Since the Fourier–Mukai transform preserves stability (Proposition 2.1) it follows thatÊ2
andF̂ are stable. ByProposition 3.16̂T = (Ê1, Ê2, .̂) is α̂-stable forα̂ ∈ (α̂L, α̂M). The
proof of the converse is identical.�

Under the same conditions ofTheorem 3.19, we have the following.

Corollary 3.20. TheFourier–Mukai transform induces an isomorphismbetween themoduli
spaces ofITi stable triples:

N s

α−
M

(n1, n2, d1, d2) � N s

α̂−
M

((−1)id1, (−1)id2, (−1)i+1n1, (−1)i+1n2).

As a consequence, the Fourier–Mukai transform yields an isomorphism between theP
N -

fibrations described inTheorem 3.17.

3.5. Applications to moduli spaces onC × P1

One notable application of the theory of triples is the construction of slope-stable bundles
on C × P1 with respect to the polarizationωα, with α > 0 (see Theorem 9.2 in[8]). It
seems quite natural to use the relative transformSP1 to further study the properties of those
bundles and to produce new examples of stable bundles. We give in this section a result on
the preservation of stability for a class of bundles onC × P1 which can not be handled using
the standard techniques based on choosing “suitable polarizations”[26] as done for example
in [9] or [16], because the polarizationsωα are not suitable; the reason for this being that
there existSU(2)-equivariant bundles which areωα-stable and whose restriction to a fibre,
is never stable (here we are assuming. �= 0). To see this, takeE such that. : E2 → E1
is not an isomorphism and note that the restriction of such a bundle to a fibreCt is given by
an extension

0→ E1 → Et → E2 → 0.

Since the associated triple is stable, Lemma 4.5 in[7] implies that Ext1(E2, E1) = 0 when-
ever. is not an isomorphism, Therefore, the previous extension is always split and the
restrictionEt is not stable.

The following Proposition follows now immediately.

Proposition 3.21. Let T = (E1, E2,.) be anα-stable triple and let E be its associated
vector bundle onC × P1. Then T isITi if and only if E isITi with respect toSP1.

We can use this Proposition to prove the following result.

Theorem 3.22. LetT = (E1, E2,.) be anα-stable triple withE1 � E2 and. �= 0.As-
sume that eitherrk(E1) = rk(E2) > 1or degE1 = degE2 �= 0.Then the associatedSU(2)-
equivariant bundle E onC × P1 is IT and the Fourier–Mukai transform̂E is polystable.
Moreover, the tripleT̂ = (Ê1, Ê2, .̂) is α̂-stable for anŷα > 0.
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Proof. Thanks toTheorem 3.4, we haveE � (p∗E1⊗ q∗OP1(1))⊕ (p∗E2⊗ q∗OP1(1))
with E1 � E2 stable. The base change property for the Fourier–Mukai transform implies

SP1(E) � (p∗S(E1)⊗ q∗OP1(1))⊕ (p∗S(E2)⊗ q∗OP1(1))

Therefore,E is IT if and only if E1 � E2 is IT with respect toS, and this follows from
Proposition 2.1since the stability ofE1 � E2 implies that its degree is not zero unless the
rank is 1. The polystability of̂E is a consequence of the above expression forÊ and the
fact thatS preserves stability, seeProposition 2.1.

On the other hand, let us recall that a triple (E1, E2,.) with E1 � E2 is α-stable, for
anyα > 0, if and only if. is an isomorphism andE1 � E2 is stable[7, Lemma 4.6]. These
conditions are preserved byS, thereforeT̂ is α̂-stable for anŷα > 0. �

Collecting previous results, particularlyTheorem 3.19, Theorems 3.14 and 3.4, we have.

Theorem 3.23. Let T be anα-stable triple of type(n1, n2, d1, d2) with α and (ni, di)
satisfying one of the conditions

(i) (n1− n2, d1− d2) = 1, (n2, d2) = 1, n1 �= n2 andαL < α < αM . Suppose also that
di > 0 for i = 1,2,d1− d2 > 0 (respectivelydi < 0 i = 1,2,d1− d2 < 0) andαL <

α < αM ,
(ii) (n1, d1) = 1, (n2, d2) = 1, d1d2 > 0 andαm < α < α+m,

(i.e. one of the conditions inTheorems 3.19 or 3.14). Then, the correspondingSU(2)-
equivariant bundle E onC × P1 is IT. Moreover ifE1 andE2 are not isomorphic, then the
Fourier–Mukai transformÊ is stable with respect to the polarizationωα̂, whereα̂ is the
corresponding parameter for the transformed triple according toTheorem 3.19in case(i)
and toTheorem 3.14in case(ii).

The relative Fourier–Mukai transform induces an isomorphism between the correspond-
ing moduli spaces ofSU(2)-equivariant bundles as follows from the previous Theorem and
Remarks 3.5 and 3.11. Therefore we have:

Corollary 3.24. LetN s
α be amoduli space ofα-stable triple satisfying one of the conditions

(i) or (ii). LetMSU(2)
α be the corresponding moduli space ofSU(2)-equivariant bundles on

C × P1. Then the relative Fourier–Mukai transform gives an isomorphism

SP1 :MSU(2)
α

∼→MSU(2)
α̂ .

4. Nahm transforms for triples

4.1. Relative Nahm transform

In this section, we modify the absolute Nahm transform to produce a relative version of
it.
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For every elliptic curveC we consider the projectionsq : X = C × P1 → P1, q̂ : X̂ =
Ĉ × P1 → P1 where Ĉ is the dual elliptic curve. We endow the pull-backPP1 of the
Poincaŕe line bundle toX×P1 X̂, with the pull-back connection∇P

P1 . For every point ˆx =
(ξ, t) ∈ Ĉ × P1 we endow the Hermitian line bundlePP1, x̂ ≡ PP1 |Xq̂(x̂)

→ Xq̂(x̂), obtained

by restrictingPP1 to the fiberXq̂(x̂) ⊂ X×P1 X̂ of q over q̂(x̂) ∈ P1, with the flat unitary
connection∇̄x̂ given by the restriction of∇P

P1 . In this way X̂ parametrizes the gauge

equivalence classes of Hermitian flat line bundles along the fibers ofq : X→ P1.
Let us consider a Hermitian vector bundleE→ X with a unitary connection∇. We

denote byEt the restriction ofE to the fibreXt = q−1(t), ∇t is the restriction of∇ to Et .
On the vector bundleEq̂(x̂) ⊗ PP1, x̂, we have the connection∇x̂ = ∇q̂(x̂) ⊗ 1+ 1⊗ ∇̄x̂.
Therefore, we have the family of coupled Dirac operators

Dx̂ =
√

2∂̄∗Eq̂(x̂)⊗PP1, x̂
: �0(Xq̂(x̂), Eq̂(x̂) ⊗ PP1, x̂) → �0,1(Xq̂(x̂), Eq̂(x̂) ⊗ PP1, x̂).

As in the absolute case we define the index Ind(D) of this family of Dirac operatorsD
parametrized bŷC × P1. The relative Nahm transform maps a Hermitian vector bundle with
a unitary connection overC × P1 into a Hermitian vector bundle with a unitary connection
overĈ × P1.

Definition 4.1. Let (E,∇) be a pair formed by a Hermitian vector bundle E overC × P1 and
a unitary connection∇ on E. We say that (E,∇) is an ITP1 (index Theorem) pair relative to
P

1 if either CokerD = 0 or KerD = 0. In the first case we say that (E,∇) is an ITP1,0-pair,
whereas in the second we call it an ITP1,1 pair. The transformed bundle of an ITP1, i-pair
is, according to the parity of i, the vector bundleÊ = ±Ind(D) → Ĉ × P1.

Proceeding in the same way as in the absolute case we can endow the transformed vector
bundle of an ITP1-pair with a Hermitian metric and a unitary connection in a natural way.
In doing this, since all the fibrations involved are trivial, the main difference one encounters
is that the parameter space of the family is enlarged fromĈ to Ĉ × P1, but sinceXq̂(x̂) � C

the Dirac operators are still defined on vector bundles over the elliptic curveC. Therefore,
the theory parallels the one developed in the absolute setting.

Definition 4.2. Let (E,∇) be an ITP1-pair. We call (̂E, ∇̂) the relative Nahm transform of
(E,∇) and denote it byNP1(E,∇).

LetE→ C × P1 be a holomorphic vector bundle endowed with a unitary connection∇
compatible with the holomorphic structure. Since the spinc Dirac operatorDx̂ gets identified
with the Dolbeault–Dirac operator ofEq̂(x̂) ⊗ PP1, x̂, by Hodge theory and the Dolbeault
isomorphism, we have

KerDx̂ � H0(Xq̂(x̂), Eq̂(x̂) ⊗ PP1, x̂) (4.1)

CokerDx̂ � H1(Xq̂(x̂), Eq̂(x̂) ⊗ PP1, x̂). (4.2)
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Let us suppose thatE is ITi with respect to the relative Fourier–Mukai transform described
in Section3.2. The isomorphisms(4.1) and (4.2)mean that (E,∇) is an ITP1, i-pair. As we
saw there, by[2, Theorem 2]or [12, Theorem 3.2.8], we have a naturalC∞ vector bundle
isomorphism induced by Hodge theory

φP1 : Si
P1(E)

∼→Ê.

Moreover, since the Poincaré bundlePP1 → C × Ĉ is a holomorphic line bundle and the
connection∇P

P1 is compatible with the holomorphic structure, the same arguments that in
the absolute case led us to proveTheorem 2.12give us now the following.

Theorem 4.3. LetF1, F2 be Hermitian vector bundles overC × P1 endowed with unitary
connections∇1, ∇2 such that(F1,∇1), (F2,∇2) are ITP1,i-pairs with respect to the Nahm
transform. Then we have

1. The connectionŝ∇1, ∇̂2 are compatible with the holomorphic structures ofS i
P1(F1),

S i
P1(F2), respectively. Thus, the curvature of the connections∇̂1, ∇̂2 is of type(1,1).

2. For every holomorphic morphism: : F1 → F2 we have an induced holomorphic mor-
phismN(.) : F̂1 → F̂2 and a commutative diagram

(4.3)

4.2. Relative Nahm transform forSU(2)-invariant Einstein–Hermitian connections

Let us suppose thatE1,E2 are complex Hermitian vector bundles overCand let us choose
anSU(2)-invariant metric onH⊗2. We put on the bundleE = p∗E1⊕ (p∗E2⊗ q∗H⊗2)
the Hermitian metric which is determined in a natural way by the Hermitian metrics ofE1,
E2 andH⊗2.

By Proposition 3.5 in[14] there is a one to one correspondence between theSU(2)-
invariant unitary connections onE and the triplesT = ((E1,∇1), (E2,∇2),.) formed by
unitary connections∇1, ∇2 on E1, E2, respectively, and aC∞ vector bundle morphism
. : E2 → E1. Moreover, this correspondence also holds at the level ofSU(2)-invariant
holomorphic structures onE. Before discussing it we introduce the following.

Definition 4.4. We call a tripleT = ((E1,∇1), (E2,∇2),.) integrable if. : E2 → E1 is
holomorphic with respect to the holomorphic structures determined by the connections∇1
and∇2.

Proposition 3.9 in[14] gives us a one to one correspondence betweenSU(2)-invariant
holomorphic structures onE, considered as integrableSU(2)-invariant connections (i.e. con-
nections with curvature of type (1,1)), and integrable triplesT = ((E1,∇1), (E2,∇2),.).



O. Garcı́a-Prada et al. / Journal of Geometry and Physics 55 (2005) 353–384 377

This is precisely the content ofProposition 3.1which gives us a bijective correspon-
dence between theSU(2)-invariant holomorphic structures onE and holomorphic triples
T = (E1 = (E1, ∂̄

∇1), E2 = (E2, ∂̄
∇2),.).

Let us denote by∇T theSU(2)-invariant integrable connection onE determined by an
integrable tripleT. If we express its curvature with respect to the splittingE = p∗E1⊕
(p∗E2⊗ q∗H2), we have

F∇
T =

(
p∗F∇1 − β ∧ β∗ ∂β

−∂̄β∗ p∗F∇2 ⊗ 1+ 1⊗ q∗F∇′ − β∗ ∧ β,

)
(4.4)

whereF∇i is the curvature of the connection∇i, F∇
′
is the curvature of the uniqueSU(2)-

invariant unitary connection onH⊗2, β = p∗.⊗ q∗η, with η anSU(2)-invariant section
of H⊗−2 and∂̄ is the Cauchy-Riemann operator determined by the connections∇1,∇2 and
∇′, for further details see[14,7].

We want to study the relative Nahm transform of theSU(2)-equivariant bundles (E,∇T)
associated to integrable triples.

The following is straightforward.

Proposition 4.5. Let T = ((E1,∇1), (E2,∇2),.) be an integrable triple on C and let
(E,∇T) be its associated bundle with connection overC × P1. If both (E1,∇1), (E2,∇2)
are ITi-pairs then(E,∇T) is anITP1, i pair.

Given an integrable tripleT = ((E1,∇1), (E2,∇2),.) such that (E1,∇1) and (E2,∇2)
are ITi-pairs we can form the triplêT = ((Ê1, ∇̂1), (Ê2, ∇̂2), .̂) obtained by means of the
absolute Nahm transform. Here we have denoted by.̂ the Nahm transformN(.). By the
sake of brevity the same notation is used hereafter. On the other hand, if (E,∇T) is the
vector bundle with connection overC × P1 associated to the tripleT, we can apply to it
the relative Nahm transform to obtainNP1(E,∇T). Taking into account the compatibility
between the Fourier–Mukai and Nahm transforms,Theorems 2.12 and 4.3andProposition
3.10we have.

Proposition 4.6.NP1(E,∇T) is the vector bundle on̂C × P1 associated to the triplêT =
((Ê1, ∇̂1), (Ê2, ∇̂2), .̂).

Definition 4.7. Let T = ((E1,∇1), (E2,∇2),.) be an integrable triple onC. We say that it
satisfies theτ-coupled vortex equations if

i�F∇1 +..∗ = 2πτIdE1

i�F∇2 −.∗. = 2πτ′IdE2,

Note that in order to have solutionsτ, τ′ must fulfill the following equation

n1τ + n2τ
′ = d1+ d2, (4.5)

with ni = rank(Ei) anddi = deg(Ei).
The following Proposition was proved in[13] (see also[7]).
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Proposition 4.8. LetT = ((E1,∇1), (E2,∇2),.) be an integrable triple and let∇T be the
corresponding connection on E. Letτ andτ′ be related by(4.5)and let us suppose that

α = (n1+ n2)τ − d1− d2

n2
> 0.

ThenT = ((E1,∇1), (E2,∇2),.) satisfies theτ-coupled vortex equations if and only if
∇T is a Einstein–Hermitian connection onE→ C × P1 with respect to the K¨ahler form
ωα = α/2p∗ωC + q∗ωP1,whereωP1 is theFubini-StudyK¨ahler formnormalized to volume
one andωC is a Kähler form of unit volume.

Proposition 4.9. LetT = ((E1,∇1), (E2,∇2),.) be an integrable triple on C which sat-
isfies theτ-coupled vortex equations and letX = C × P1. Then:

(i) If the Hermitian endomorphisms2πτIdE1 −..∗ and 2πτ′IdE2 +.∗. are non-
negative and there existx1, x2 ∈ C such that2πτIdE1 −..∗(x1) > 0, 2πτ′IdE2 +
.∗.(x2) > 0, then(E,∇T) is anITP1,0-pair and(E1,∇1), (E2,∇2) are IT0 pairs.

(ii) If the Hermitian endomorphisms2πτIdE1 −..∗ and 2πτ′IdE2 +.∗. are non-
positive and there existx1, x2 ∈ C such that2πτIdE1 −..∗(x1) < 0, πτ′IdE2 +
.∗.(x2) < 0, then(E,∇T) is anITP1,1-pair and(E1,∇1), (E2,∇2) are IT1 pairs.

Proof. For everyx̂ = (ξ, t) the restriction ofE = p∗E1⊕ (p∗E2⊗ q∗H⊗2) to Xq̂(x̂) � C

is isomorphic toE1⊕ E2 asC∞ bundles. Now(4.4)implies that the curvature of∇q̂(x̂) with
respect to the splittingEq̂(x̂) � E1⊕ E2 is

F∇q̂(x̂) =
(
F∇1 0

0 F∇2

)
.

The claim now follows fromTheorem 2.6. �

4.3. Covariantly constant triples

Definition 4.10. Let T = ((E1,∇1), (E2,∇2),.) be an integrable triple onC. We will say
thatT is covariantly constant if..∗ is covariantly constant with respect to∇1 and.∗. is
covariantly constant with respect to∇2.

Remark 4.11. Denote by∇ the connection naturally induced on Hom(E2, E1) by∇1 and
∇2. If . is covariantly constant with respect to∇ then it is easy to check thatT is covariantly
constant. Moreover,. is covariantly constant with respect to∇ if and only if. : E2 → E1
is an anti-holomorphic map.
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Proposition 4.12. Let T = ((E1,∇1), (E2,∇2),.) be a covariantly constant integrable
triple on C. Then, we have holomorphic orthogonal decompositions

E1 � Ker.∗ ⊕ E′1
E2 � Ker.⊕ E′2

which are compatible with the connections, and. induces an holomorphic isomorphism
. : E′2 → E′1.

Proof. Since..∗ and.∗. are covariantly constant vector bundle endomorphisms, they
are holomorphic and their eigenvalues are constant. Moreover,..∗,.∗. are positive Her-
mitian endomorphisms whose spectrum may differ only at 0; Therefore, we have orthogonal
decompositions

E1 = Ker.∗ ⊕ E1(λ1)⊕ . . .⊕ E1(λk)

E2 = Ker.⊕ E2(λ1)⊕ . . .⊕ E2(λk),

whereE1(λi),E2(λi) are the eigenbundles with eigenvalueλi �= 0 with respect to the holo-
morphic endomorphisms..∗ and.∗., respectively. Since these endomorphisms are
covariantly constant, the subbundlesE1(λi), E2(λi) are preserved by the connections∇1,
∇2, respectively. Moreover, for everyλi we have an isomorphism

. : E2(λi)
∼→E1(λi)

Therefore, if we denoteE′1 = E1(λ1)⊕ . . .⊕ E1(λk), E′2 = E2(λ1)⊕ . . .⊕ E2(λk), we
have an isomorphism

. : E′2
∼→E′1

as required. �

With the same notations as above, we have the following

Proposition 4.13. Let T = ((E1,∇1), (E2,∇2),.) be a covariantly constant integrable
triple on C. ThenT satisfies theτ-coupled equations if and only if

1. ∇1 induces a constant central curvature connection onKer.∗ with factor2πτ, unless
Ker.∗ = 0, and a constant central curvature connection onE′1 with factorπ(τ + τ′)
unlessE′1 = 0.

2. ∇2 induces a constant central curvature connection onKer. with factor2πτ′ unless
Ker. = 0 and a constant central curvature connection onE′2 with factor π(τ + τ′)
unlessE′2 = 0.
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Proof. SinceT is covariantly constant we have the decompositions

E1 = Ker.∗ ⊕ E1(λ1)⊕ . . .⊕ E1(λk)

E2 = Ker.⊕ E2(λ1)⊕ . . .⊕ E2(λk),

provided byProposition 4.12. Moreover, sinceT satisfies theτ-coupled equations, we have

i�F∇1 = 2πτIdE1 −..∗

i�F∇2 = 2πτ′IdE2 +.∗..

Therefore, we have

i�F∇1 |Ker.∗ = 2πτIdKer.∗ i�F∇1 |E1(λi) = (2πτ − λi)IdE1(λi) (4.6)

i�F∇2 |Ker. = 2πτ′IdKer. i�F∇2 |E2(λi) = (2πτ′ + λi)IdE2(λi). (4.7)

This implies that Ker.∗, E1(λi), Ker., E2(λi) are bundles with constant central cur-
vature connection with slopes

µ(Ker.∗) = τ µ(E1(λi)) = τ − λi

2π

µ(Ker.) = τ′ µ(E2(λi)) = τ′ + λi

2π
.

But sinceE1(λi) is isomorphic toE2(λi) we must haveµ(E1(λi)) = µ(E2(λi)), that is
λi = π(τ − τ′). Therefore, in the above decompositions there is only one eigenvalue and if
we substituteλi in (4.6)and(4.7)we get the required values for the factors of the constant
central curvature connections. The converse statement is just a simple checking.�

Corollary 4.14. LetT = ((E1,∇1), (E2,∇2),.) be a covariantly constant integrable triple
on C which satisfies theτ-coupled equations. ThenT is (τ − τ′)-polystable. Moreover,T
decomposes as a sum of(τ − τ′)-polystable triples.

T = (Ker.∗,0,0)⊕ (E′1, E
′
2,.)⊕ (0,Ker.,0).

Proof. The Hitchin–Kobayashi correspondence for triples,[7, Theorem 5.1], establishes
an equivalence between triples that satisfy theτ-coupled vortex equations and (τ − τ′)-
polystable triples. Therefore, the Corollary follows at once.

However, in the present case it is possible to give a direct proof. SinceT satisfies the
τ-coupled vortex equations,Proposition 4.13implies that Ker.∗, E′1 � E′2 and Ker. are
polystable bundles with slopes

µ(Ker.∗) = τ, µ(E′1) = µ(E′2) = 1
2(τ + τ′), µ(Ker.) = τ′.
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Therefore, we have

µα(Ker.∗,0,0)= µ(Ker.∗) = τ

µα(E′1, E
′
2,.) = µ(E′2) = µ(E′1)+ α

2 = τ

µα(0,Ker.,0)= µ(Ker.)+ α = τ,

whereα = (τ − τ′). SinceE′2 carries a constant central curvature, there exists an orthogonal
decomposition

E′2 = E
(1)
2 ⊕ . . .⊕ E

(m)
2

compatible with the connection and such that every factor carries an irreducible constant
central curvature connection. Since.∗. = λ IdE2 it follows that we have an orthogonal
decomposition

E′1 = .(E(1)
2 )⊕ . . .⊕.(E(m)

2 )

Thus, the triple (E′1, E
′
2,.|E′2) splits into the direct sum of subtriples (E

(i)
2 ,.(E(i)

2 ),.|E(i)
2

)

with E
(i)
2 stable and.|E(i)

2
an isomorphism. By[7, Proposition 3.21]this implies that

(E′1, E
′
2,.|E′2) is α-polystable. Therefore,T is α-polystable (see[7, Definition 3.15]). �

Remark 4.15. If T = ((E1,∇1), (E2,∇2),.) is a covariantly constant integrable triple on
C which isα-stable withE1 �= 0 andE2 �= 0, then the previous Corollary implies that.

has to be an isomorphism.

As a consequence ofProposition 4.9we immediately obtain.

Lemma 4.16. LetT = ((E1,∇1), (E2,∇2),.) be a covariantly constant integrable triple
on C which satisfies theτ-coupled equations.

(i) If τ > 0andτ′ > 0 then(E,∇T) is anITP1,0-pair and(E1,∇1), (E2,∇2) areIT0 pairs.
(ii) If τ < 0andτ′ < 0 then(E,∇T) is anITP1,1-pair and(E1,∇1), (E2,∇2) areIT1 pairs.

Theorem4.17. LetT = ((E1,∇1), (E2,∇2),.) be a covariantly constant integrable triple
on C which satisfies theτ-coupled equations and let(E,∇T) be its associated bundle with
connection overC × P1.

1. If τ > 0andτ′ > 0 then theNahmtransform̂T = ((Ê1, ∇̂1), (Ê2, ∇̂2), .̂) is acovariantly
constant integrable triple. Moreover,T̂ satisfies thêτ-coupled equations, for some value
of τ̂, if and only ifτ = τ′.

2. If τ < 0andτ′ < 0 then theNahmtransform̂T = ((Ê1, ∇̂1), (Ê2, ∇̂2), .̂) is acovariantly
constant integrable triple. Moreover,T̂ satisfies thêτ-coupled equations, for some value
of τ̂, if and only ifτ = τ′.
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Proof. Proposition 4.12gives us a decomposition

E1 � Ker.∗ ⊕ E′1
E2 � Ker.⊕ E′2

SinceT satisfies theτ-couple vortex equations,Proposition 4.13implies that (Ker.∗,∇1),
(E′1,∇1) � (E′2,∇2) and (Ker.,∇2) are bundles with constant central curvature with slopes
µ(Ker.∗) = τ, µ(E′1) = µ(E′2) = 1

2(τ + τ′), µ(Ker.) = τ′. Now if we apply the Nahm
transform and denote (.̂)∗ by .̂∗, Theorem 2.11implies that (Ker.̂∗ = ˆKer.∗, ∇̂1),
(Ê′1, ∇̂1) � (Ê′2, ∇̂2) and (Ker.̂ = ˆKer., ∇̂2) are bundles with constant central curvature
and we get a decomposition

Ê1 � Ker.̂∗ ⊕ Ê′1
Ê2 � Ker.̂⊕ Ê′2

The conditions (.∗.)|E′2 = λ IdE′2, (..∗)|E′1 = λ IdE′1 with λ �= 0 imply (.̂∗.̂)|Ê′2 =
λ IdÊ′2

, (.̂.̂∗)|Ê′1 = λ IdÊ′1
. Let us prove the first equality in the IT0 case. Givens, t ∈

Ê2,ξ = Ker ∂̄∇2,ξ ⊂ �0(E2,ξ) one has

〈.̂∗.̂(s), t〉Ê2,ξ
= 〈.̂(s), .̂(t)〉Ê2,ξ

Taking into account the definition of the Hermitian metric onÊ2,ξ given in(2.3)of Section
2.2and the definition of̂. given inTheorem 2.12we get

〈.̂(s), .̂(t)〉Ê2,ξ
=
∫
Cξ

〈.(s),.(t)〉E2 ω =
∫
Cξ

〈.∗.(s), t〉E2 ω

Therefore, ifs, t ∈ Ê′2,ξ one has

〈.̂∗.̂(s), t〉Ê2,ξ
= λ 〈s, t〉Ê2,ξ

which proves our claim. The second equality follows in the same way. The proofs in the
IT1 case are entirely similar.

This proves that ((̂E1, ∇̂1), (Ê2, ∇̂2), .̂) is a covariantly constant integrable triple. More-
over, the slopes of these bundles areµ(Ker.̂∗) = −1/τ, µ(Ê′1) = µ(Ê′2) = −2/(τ + τ′),
µ(Ker.̂) = −1/τ′. An easy computation shows now thatT̂ fulfills the conditions of
Proposition 4.13in order to have a solution of thêτ-coupled vortex equations, for some
value ofτ̂, if and only if τ = τ′. �

As a consequence of the preceding Theorem and the Hitchin–Kobayashi corre-
spondence for triples (Theorem 5.1 in[7]), which establishes an equivalence between
holomorphic triples which satisfy theτ-coupled equations andα-polystable triples,
we have.



O. Garcı́a-Prada et al. / Journal of Geometry and Physics 55 (2005) 353–384 383

Corollary 4.18. Polystability is not preserved, in general, under the Fourier–Mukai and
Nahm transform.

Proof. It is enough to take any stable bundlesF1,F2,F such thatµ(F ) = 1
2(µ(F1)+ µ(F2))

andµ(F1) > µ(F2), which are known to exist since the moduli spaces of stable bundles with
fixed coprime rank and degree over an elliptic curveCare isomorphic toCand thus they are
not empty (see[27]). Now define the tripleT = (F1,0,0)⊕ (F,F, IdF )⊕ (0, F2,0) and
endowF1,F2,Fwith connections of constant curvature compatible with their holomorphic
structures according to Donaldson Theorem[11]. Now, Proposition 4.13implies thatT is
(τ − τ′)-polystable since, by construction, it satisfies theτ-coupled equations, withτ =
µ(F1) andτ′ = µ(F2).

If we takeµ(F1) �= µ(F2), Theorem 4.17implies that the transformed triplêT does not
satisfy theτ̂-coupled equations for any value ofτ̂. By the Hitchin–Kobayashi correspon-
dence for triples[7, Theorem 5.1], this implies that̂T is not polystable. �

The preservation of stability remains as an open question. Notice that in the case of stable
triples (E1, E2,.) with E1 �= 0 andE2 �= 0, the condition of being covariantly constant
implies that. is an isomorphism (Remark 4.15). Now stability is preserved in the conditions
of Theorem 3.22.
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[3] C. Bartocci, U. Bruzzo, D. Herńandez Ruiṕerez, A Fourier–Mukai transform for stable bundles onK3

surfaces, J. Reine Angew. Math. 486 (1997) 1–16.
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