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Abstract

We define a Fourier—Mukai transform for a triple consisting of two holomorphic vector bundles
over an elliptic curve and a homomorphism between them. We prove that in some cases, the transform
preserves the natural stability condition for a triple. We also define a Nahm transform for solutions
to natural gauge-theoretic equations on a triple—vortices—and explore some of its basic properties.
Our approach combines direct methods with dimensional reduction techniques, relating triples over
a curve with vector bundles over the product of the curve with the complex projective line.
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1. Introduction

The Fourier—Mukai transform, as originally introduced by Mukai for abelian varieties
[22] establishes a duality between the derived categories of coherent sheaves over an abelian
variety and its dual variety. The theory has been extended to more general varieties, includ-
ing K3 surfaceq3], Calabi—Yau threefolds or elliptic fibratiori8,16]. In particular, it is
a very powerful tool in the study of moduli spaces of vector bundles over abelian surfaces
and K3 surfaces (s€8,16,21,23,28For instance). In the gauge-theoretic side, the Nahm
transform provides a differential geometric analogue of the Fourier—Mukai transform relat-
ing instantons (or monopoles) on dual manifold$,17,24] In many cases, whenever it
makes sense, both transforms are compatible in a suitable way.

In this paper, we study Fourier—Mukai and Nahm transforms for holomorphic triples
over an elliptic curve and their corresponding vortex equations. A triple here consists of
two holomorphic vector bundles over the elliptic curve and a homomorphism between them.
The motivation to study this problem is two-fold. On the one hand the Nahm transform has
been successfully applied to find instanton and monopole solutions, which are defined in
real dimensions 4 and 3, respectively. It is then very natural to try to find an analogue for
two-dimensional vortices. On the other hand, vortices in two dimensions are equivalent to
SU(2)-invariant instantons over the product of the elliptic curve and the Riemann sphere,
wheretheSU(2) action is given simply by the usual one on the sphere. This suggests arelative
four-dimensional approach to the problem. In a related context, the Nahm transform has
been successfully applied to study doubly periodic instantons and their relationship with
Hitchin’s equation$18,19]

Here is a description of the paper. In Sect®yrwe briefly review the Fourier—Mukai
and Nahm transforms for vector bundles over elliptic curves. We recall the preservation of
stability and prove that the constant central curvature condition for a connection (which on
a curve coincides with the Einstein—Hermitian condition) is preserved. Although the latter
seems to be of general knowledge, we have not found it in the literature and hence include
it here since it is relevant for our further study for triples. We follow the approach given in
[13].

In Section3, we review first the basic stability theory for triples. An important feature
is that the stability criterium depends on a real parameter which is typically boywted
We then introduce the Fourier—Mukai transform for triples on elliptic curves and give two
natural approaches for transforming a triple. The first one is based on the absolute Fourier—
Mukai transform acting on the components of the triple. The second approach is based
on a relative Fourier—Mukai transform combined with a dimensional reduction procedure.
We prove that the Fourier—Mukai transform preserves stability of triples for “small” and
“large” values of the stability parameter, providing an isomorphism of moduli spaces. What
happens for other values of the parameter remains to be investigated. We conclude this
section by applying these results to obtain isomorphisms between moduli spaces of stable
SU(2)-equivariant vector bundles.

Finally, in Sectiord, in parallel with Sectior8, we develop the formalism for a relative
Nahm transform in the same context. We apply this formalism to transform a solution
to the vortex equations over a triple, regarded as&(R)-invariant Einstein—Hermitian
connection on a certaifiU (2)-equivariant bundle over the product of the curve with the
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complex projective line. In general, it seems very hard to identify the equation satisfied by
the Nahm transform of a vortex solution, which one would expect to be again the vortex
equation on the transformed triple. We content ourselves with analysing in full detail, the
case of covariantly constant triples, leaving for a future paper the analysis of the general
case. As a byproduct we prove that polystability of triples may not be preserved by the
Fourier—Mukai transform.

In this paper, we work over the field of complex numbErs

2. Fourier-Mukai and Nahm transforms on elliptic curves
2.1. Fourier—Mukai transform

Let C be an elliptic curve and l&t = Pic®(C) be its dual variety. Althougl® and(C are
isomorphic, it will be convenient to keep a notational distinction between them for the sake
of clarity. OverC x C we consider the PoincabundleP and we denote by andr;. the
canonical projections onto the facta@@sandC. As it is customarypP is normalized so that
it is trivial over {0} x C. In [22], Mukai introduced a functor between the bounded derived
categories of coherent sheavesodndC:

S: D(C) — D(C).
This functor acts as follows
S(E) = R (reE @ P),

whereE is an object of the derived category aRd . , denotes the derived functor of. .

We need some standard terminology and notation. As usual, we dendté¢Hyythe
sheaf defined by thieth cohomology of the comple&(E), that is,

S'(E) = H(S(E)).

When E is a single sheaf§(E) is the ordinary derived functoR"n@’*(ngE ®P). A
sheafE is said to be WIT if Sf(E) 0 for every j #i, andE is called IT; if it is
WIT; and its unique transforns’(E) is locally-free. EquivalentlyE is IT; if the co-
homology groupH/(C¢, E ® P¢) = 0 vanishes for every # i and everyt ¢ C, where
C: = C x {&} andP¢ is the restriction ofP to Ce. In this case, the fibre overe C of
the unique Fourier—Mukai transfonﬁ(E) is canonically isomorphic té7’(Cs, E ® Pe).
The Fourier-Mukai transforns(E) of a WIT; sheafE will be denoted as usual bg.
When there is no need to specify the indewe shall simply say that a sheaf is WIT
orliT.

One of the mostimportant features of the fun@isrthat it admits an inversg: D(C) —
D(C). That is, there are natural isomorphisms:
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SoS~ Idp(c)
So8~ IdD(fJ)'

Moreovers is explicitly given by
S(F) = Rrc +(w5(F) @ PY[1)).

whereP" is the dual ofP and [1] is the shift operator.
Letusrecall the following well-known fact whose proofrelies on the invertibility property
of the Fourier—Mukai transform (s¢&3], also[10,9]).

Proposition 2.1. If E is a semistablgstable vector bundle of non-zero degree over an
elliptic curve C, then E i$T and the transfornZ is also semistabléstable. Moreover E is
ITo (ITq) if and only ifdeg(E) > 0 (degE) < 0). Finally, if E is IT; with Chern character
ch(E) = (r, d) thench(E) = ((—=1)'d, (—1)+1r) = (=1)(d, —r).

Remark 2.2. If we take into account that any vector bun@@n an elliptic curve decom-
poses uniquely into a direct sum of semistable bundles we concludg thdTg (IT1) if
and only if all of its components have positive (negative) degree.

Recall that on an elliptic curv€ the moduli spaceV (r, d) of Sequivalence classes
of semistable bundles of ramkand degred is isomorphic to the symmetric produgtcC,
whereh = (r, d) is the greatest common divisor plandd. When ¢, d) > 1 there are no
stable bundles iM ¢ (r, d). Whenr andd are coprime, all the semistable bundles are stable
and Mc(r, d) is isomorphic toC (see[1,27] for details, as well a§d,16]). The Fourier—
Mukai transform is well-behaved with respect to families of stable bundles and therefore
induces morphisms between moduli spaces. In the case; gehistable bundles on an
elliptic curve, the Fourier—Mukai transform also preser8esjuivalence. More precisely
if E is an IT; semistable bundle o8, then it is immediate to see that every stable bundle
Ey in the graded object GH) = @y E; with respect to a Jordan-étter filtration is IT;.
From this follows that ifE and E’ areS-equivalent IT bundles, then the transfornisand
E' remainS-equivalent. Therefore, we have:

Corollary 2.3. Let M¢(r, d) be the moduli space of semistable bundles of rank rdagd0.
Then in the IT; case the Fourier—Mukai transform induces an isomorphism between the
moduli spaces

S: Mc(r, d)=>Me((—1)d, (1) ).

Therefore the Fourier—Mukai transform gives rise to an isomorphism between symmetric
products of elliptic curves.

2.2. Nahm transform

We come now to the definition of the Nahm transform in the context of elliptic curves.
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LetCbe acomplex elliptic curve endowed with a flat metric of unit volume. The canonical
spinor bundles = A%® T*C of C as a spifimanifold, has a natural splitting= S* @ S~
where

st = A%07*C, s~ = A%lT*C.

We denote the spinorial connection®by V.

The dual elliptic curve parametrizes the gauge equivalence classes of Hermitian flat line
bundles ove€. The Poinca& bundleP introduced in Sectio.1is endowed with a unitary
connectionVyp, such that the restriction ofX Vp) to the sliceCs is in the equivalence
class defined by € C. Therefore, for everg e C, we have the Hermitian line bundle
Pe = Pc, — C endowed with the flat unitary connectidiz = V/p,.

Let us consider a Hermitian vector bundie— C with a unitary connectioly. On the
vector bundleE ® Pz, we have the connectiovi: = V ® 1+ 1® V;. Therefore, we have
the family of coupled Dirac operators

D : Q%C, ST Q E®@P:) - Q%C, 5T ® E® ).

It follows from the Atiyah—Singer Theorem for families that the difference bundle of the
family of Dirac operator® parametrized by is a well defined object Ind§) in K-theory
which is called the index oD. Moreover, if either one ofKer D¢} or {CokerDg} has
constant rank, then K& and CokeiD are vector bundles ovér and one has that

Ind(D) = [Ker D] — [CokerD] e K(C).

Definition 2.4. Let (E, V) be a pair formed by a Hermitian vector bund@eover C and
a unitary connectiofV on E. We say that £, V) is an IT (index Theorem) pair if either
CokerD = 0 or KerD = 0. In the first case we say that (V) is an ITp-pair whereas in
the second we call it an kFpair. The transformed bundle of an;{jpair is the vector bundle
E = (—=1)¥Ind(D) — C.

Remark 2.5. From a more formal point of view, the study of the family of Dirac operators

D can be approached via the techniques developed by Bismut in his proofs of the Atiyah—
Singer index Theorem for familig$]. In that framework one has to consider the fibration

e C % C — C as a family of spifimanifolds, whose fibres are precisély. The vector
bundle of relative spinors is identified withf-S and we can consider then the coupled
relative Dirac operator

D:Q@E(ST®E)®@P) — QUi (S™ ® E)® P),
whose restriction t@; is Dg.

The Nahm transform fron€ to C is a procedure which transforms Hermitian vector
bundles with unitary connections @hinto Hermitian vector bundles with unitary connec-
tions onC. The main idea relies on the fact that the index (minus the index) of the family
D is a finite rank vector bundle whenever Cokee= 0 (Ker D = 0). In certain cases, this
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is a consequence of a vanishing Theorem of Bochner type. Before doing so, we introduce
some more notation and recall the Weitzéok formula.

We recall that the Poincarline bundleP — C x C is a holomorphic Hermitian line
bundle and that the unitary connecti@p is compatible with the holomorphic structure. It
is also known that a Hermitian vector bundle— C with a unitary connectioW is naturally
endowed with a holomorphic structure sirfcis of type (1 1) (seq12, 2.1.53). Moreover,
the spiii Dirac operatotDg coincides with the Dolbeault-Dirac operatorf P

DS = \/E(gEQJPg + 5E®'Pg)v

wherea_E®pE is the Cauchy-Riemann operator Bf® P:. SinceC is a one-dimensional
complex manifold the Dolbeault-Dirac operaf¥ is reduced to

Dg = V23pgp, : Q%Ce, E ® P) — Q2Y(Cs, E ® Py).

As a consequence of thedKler identities (sefl2]), the Weitzenbck formula for the
Dirac operatoD; can be expressed as

DfD; = 203gp,0pop, = ViVe —iAFY ®ldp, (2.1)

whereiAFV is the Hermitian endomorphism & obtained by contractingF" with the
Kahler form. We have the following vanishing Theorem.

Theorem 2.6. Let(E, V) be a pair formed by a Hermitian vector bundle over C and a
unitary connection.

(i) IfiAFY is non-negative and there exists C such that A FY (x) > 0then(E, V) is
anITo-pair.

(i) If iAFY is a non-positive and there existss C such thatiA FV (x) < 0 then(E, V)
is anlT-pair.

Proof. Let us suppose that\ F¥ < 0. If we apply the Weitzenbock formui.1) to a
sections € T'(C, E ® Pg) and we integrate ovet we obtain

D651 = IVesl? = [ GAFTs.5)0 20, 2.2)
C
wherew is the Riemannian volume element@fFrom relation(2.2) we obtain

Des = 0 s | @ Ves =0

8= () iAFYs, s) = 0.
By (a) one sees that, s) is constant; Therefore, if there existg C suchthaiA FY (x) < 0,
then ¢) implies thats(x) = 0 and sincds, s) is constant, one has= 0 and ;) is proved.
By Serre duality, we hav&(C, E) ~ HO(C, EV)*, and hence the first statement follows
from the second one. (J
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We can endow the transformed vector bundle of an IT-pair with a Hermitian metric and a
unitary connection in a natural way. This follows from a rather straightforward application
of the theory for families. We briefly recall the main facts of this construction following the
approach of12, Chapter 3and[5].

Let H be the space af™ sections of the vector bundig:(S* ® E) ® P overC x C.

We may regard{{° as the space af*° sections ovecr of the infinite dimensional fibre
bundles}$°. The fibresH , are the sets of™ sections oveC of (ST ® E)® P.

Sincer(S* ® E) ® P is a Hermitian vector bundle, and the fibr€s of the projection
me € x C — C carry a natural volume element we can define the Hermitian metric

(h1, h2)z = | (h1, h2) o, (2.3)
Ce

on ng £ We then have the Hilbert bundl@s. whose fibresH .+ ¢ are theL2-completion
of HT ; with respect to this metric.

Let Vl be the connection on}.(S* ® E) ® P obtained fromVs, V and Vp. Now we
define a connectioR on HS as follows

Vph =Vi,h, forevery DeX(C),he HY,

whereD? is the natural lift of the vector fiel® from C to C x C. It is easy to check that
V is a flat connection.

If (E, V) is an IT;-pair, then the regularity Theorem for elliptic operators implies fhat
is, according to the parity of the indéxa subbundle ot{$°, and hence there is a naturally
induced metric orE. We also have a natural unitary connecti@induced by the ambient
connectionv and the orthogonal projectiddonto £, that is

V=PoV.

Let us recall that Hodge theory provides an explicit formula for the projéetérdeed, if
(E, V) is ITp then for every € C, we have

Py = Id — DgG‘ng,
whereG is the Green operator @ D;. A similar formula holds in the case of andpair.

Definition 2.7. Let (E, V) be an IT-pair. The pairk, V) is called the Nahm transform of
(E, V) and is denoted by/(E, V).

Remark 2.8. If V andV’ are gauge equivalent unitary connections, it follows from the
very definition of the Nahm transform th&t and V' are also gauge equivalent unitary
connections.

The following is an easy consequence of the flatness.of



360 O. Garda-Prada et al. / Journal of Geometry and Physics 55 (2005) 353-384

Proposition 2.9. Let(E, @) be the Nahm transform of dif; pair. The curvature o is
given by

FY=Po(VPAVP)oP.

Moreover, we can express the curvature in terms of the Green operator as follows
FY=Po(VD*oGAVD)o P, if EislTo.

A similar expression holds in the case ofldn pair.

We study now the Nahm transform of a connection with constant central curvature. Since
all the line bundle$>; are flat they are trivial as smooth bundles and we may consider the
connectiorVyp of the Poincak line bundle as a family of connectioRs on the trivial line
bundle. Inthe same wayf — C is a Hermitian vector bundle with a unitary connection

then we have a family of connectio®s on E and the family of Dolbeault—Dirac operators
D¢ considered above act now in the same vector bundle

Ve 1 QOE) — QOY(E).

Using a flat holomorphic coordinateon C and the flat coordinate which it induces on
C, we have

3¢ = 9¥ + rwdz ® Idg,
which clearly shows that this family depends holomorphicallyoa C.

The triviality of the holomorphic tangent bundle Gfallows to identify2%1(C) with
Q°(C) by contraction with a global anti-holomorphic vector fisddSince the metric oG
is flat, we can choosE such that it is a parallel vector field whose pointwise norm is equal
to 1. We define the operator

De = i;0%¢ : QUE) — QU(E).
Lemma 2.10. The curvature oW, is related to the operatoD by the formula
iANFY = iAFY¢ = 2[D;, Df].

Let us recall that the flat metric & induces in a natural way a flat metric 6éh In the
following Theorem we consider unitary connections of constant central curvat@eaod

C with respect to these metrics.

Theorem 2.11. Let V be a connection on E with constant central curvature with factor
A e R, thatisiAFY = Aldg, wherer = 27u(E) and u(E) is the slope of E.
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1. If deg) > O then(E, V) is anITq pair and V is a connection orE with constant
central curvature with factok. = —27/u(E).

2. If deg(E) < O then(E, V) is an Ty pair and V is a connection or£ with constant
central curvature with factok = —27/u(E).

Proof. We shall only prove the first case since the second one can be dealt with in a similar
way.

It is well-known (11,25)) that sinceV has constant central curvatuke must be
polystable. The condition defj > 0 impIies due taProposition 2.1that (£, V) is an
ITo pair. All the operator®; act onQO(E), Therefore, the bundle of kernelsis a finite
rank subbundle of the trivial Hilbert bundié, — C introduced above ang : H, - E
is the orthogonal projection. Then, we have

V=PoV,

whereV is the natural flat connection @, . Taking into account the above identifications,
the curvature of the connectionof E, given inProposition 2.9can be expressed as

FY = P: o (VD 0 G A VD) 0 Py, (2.4)

whereG¢ is the Green operator @;D;.
As we mentioned above, we can choose a flat holomorphic coordinmat€ such that
the Kahler form is expressed as

i _
= édz Adz.
Therefore, locally we may také = 9/9z. This implies that

Dg’: = Do + rwldg.

Itis clear now thaVDs = ndw ® Idg and@Dg’E = dw ® Idg which upon substitution
in (2.4)gives

FY =72 P 0 Gg o Pedw A dw,

where we have used the fact that the identity operator commutes with the Green'’s operator
G¢. We then have to prove that for everye KerD; one has

Geu = au + v,
whereq is a constant and € (KerD;)*. To see this suppose that

Geu=u'+v for u' eKerD: and ve (KerDg)t.
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Operating byG; * = D; D} we obtain

U= DED;;M/ + Dg'D;U. (2.5)
But by hypothesisDo, Dg] = A/21dg, Therefore, D¢, Df] = A/21dg and, sinceDgu’ =
0, Eq.(2.5)becomes

A
u—> u = DeDjv.

Now D¢ Djv € (KerDg)t, since for everyi; € KerDg,

A A
(Dg’Dg‘v, uy) = (2 v+ Dg'ng, u1> = <2 v, u1> + (ng, Dgul) =0.

Thusu — A/2u’ € KerD; N (KerDg)* = {0}. Hencex’ = 2o~ 1u, concluding that

~ _ 2 2 _ 2 2
FY =—2712)fldu)/\dw=—( 7;) izdw/\dwz—( 7;) o ® ldyg,
i i

whered is the Kahler form ofC. Thereforei A FV = —2r/u(E) Idy; as required. [
2.3. Compatibility between the Fourier—Mukai and Nahm transforms, functoriality and

invertibility

Let E — C be a Hermitian vector bundle endowed with a unitary connedioAs we
have seen the spirDirac operatorD; is identified with the Dolbeault-Dirac operator of
E ® P:. Hodge theory and the Dolbeault isomorphism give that

Ker Dg ~ HO(C, E ® P¢) (2.6)
CokerDs ~ HY(Cs, E ® Ps). (2.7)

If we suppose thaE is IT; with respect to the Fourier—Mukai transfor§ then the
isomorphismg2.6) and (2.7)mean that £, V) is an IT;-pair with respect to the Nahm
transform. By[2, Theorem 2pr[12, Theorem 3.2.8we have a natural vector bundle
isomorphism induced by Hodge theory

or : ESS(E).
Moreover, we have the following.

Theorem 2.12. Let E1, E2 be Hermitian vector bundles over C endowed with unitary
connectionsvy, Vo such that(E1, Vi), (E2, V2) are IT;-pairs with respect to the Nahm
transform. Thenwe have
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1. The connections/,, V, are compatible with the holomorphic structures ${E1),
S'(E»), respectively.

2. For every holomorphic morphisd : E; — E1 we have an induced holomorphic mor-
phismA(®) : E; — E1 and a commutative diagram

~ PEy
Ey — S(EQ)

N(®) S(®)

~ o,

B, —*S(E) (2.8)

Proof. The Poincat bundleP — C x C is a holomorphic line bundle and the connection
Vp is compatible with the holomorphic structure. This implies that the families of Dirac
operatorsDg, D’g vary holomorphically with e C. The first statement follows now by a
standard argument concerning holomorphic families[$2eTheorem 3.2.8]

Since @ is holomorphic, the second statement follows immediately in thechse,
because the fibers of the Nahm transforms are given by the kernels of the Cauchy-Riemann
operators. In the ITcase the fiber&y ¢, E1 ¢ of the Nahm transform @t e C are given by
the cokernels of the Dirac operatdds ¢, D1 ¢ and we have

CokerDy ¢ = Ker D3 ; = Kerd"2e
CokerDy ¢ = KerDj ; = = Kerd "1t

Now & induces a morphism from Kér2¢ to QOYC E1® P:) and composing it with the
orthogonal projection onto Kerie we get a morphism

M®P); : Kerd 2¢ — Kerg e

which by Hodge theory is the unique one that renders commutative the following diagram

~  PBye

EQs_’S(Ez) ](C7 E2<£)
N(@)e S(®)e

. oE
By e —>S(E\)e= HY(C, Ey)

SinceS(®) is a vector bundle morphism agg,, ¢, areC> vector bundle isomorphisms,
we conclude that/{®) is also aC> vector bundle morphism and we have the commutative
diagram(2.8). Moreover,S(®) is a holomorphic morphism and by the first part of the
Theorem, we have the compatibility between the connectien’; and the holomorphic
structures ofS(E>2), S(E1), respectively. These facts imply thaf(i®) is a holomorphic
morphism. O

If his an Hermitian metric on @ vector bundleE then A(E, &) will denote the space
of unitary connections which are compatible withOn the other hand we will denote by
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C(E) the set of holomorphic structures &nlt is well known that there is an identification
A(E, h)=>C(E)

which associates toF( V) the holomorphic vector bundlé = (E, 3V), the inverse cor-
respondence being given by the map which associates to every holomorphic bundle
& = (E, 3V) the unique connectiol compatible with the complex structure and the Her-
mitian metric. We can rephrase the preceding Theorem by saying that the Nahm transform
and the Fourier—Mukai transform are compatible with this identification. That is to say, the
following diagram is commutative

A(E, h) —~C(E)

s

A(E, h) —==C(E).

The curveC and its dual elliptic curve are in a symmetrical dual relation with one
another (se¢l2, Section 3.3.9] That is,C parametrizes the flat Hermitian line bundles

over C, thereforeC ~ C. Moreover, the restriction of the dual of the Poirieéine bundle
PV to the sliceC, endowed with the restriction of the connecti@iv is isomorphic, as
a Hermitian line bundle with connection, to the flat Hermitian bundle correspondixg to
We can hence apply the Nahm construction in order to transform Hermitian vector bundles
with connection ovet into Hermitian vector bundles with connection o&r

Let V be a connection with constant central curvature different from zero on a bndle
overC, and let€ = (E, 3V) be the corresponding holomorphic vector bundle; thengjeg(
0. The isomorphism&.6) and (2.7)mply that& is IT; with respect to the Fourier—Mukai
transform. Let = S'(E) be its unique transform. It is well known, sg&2], that&is IT1_;
and that there is an isomorphism of holomorphic vector bundles

E=5Y(SE) ~ € (2.9)
By Theorem 2.1%V is a constant central curvature connectionfrand hence we can
apply to it the Nahm transform to obtaifr (V). By (2.9)we have an isomorphism

E~ELE.

Moreover,Theorem 2.12mplies that% is compatible with the holomorphic structure of
&, and therefore by the results of Donaldgaf], which in particular extend the theorem
of Narasimhan and Seshai2b] to genus one, we have the following.

Theorem 2.13.If V is a connection with constant central curvature different from zero on

E thenV is a connection with constant central curvature on the buridlend there is a
natural isomorphism

(E,¥) ~ (E, V).
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Let A.(E, h) C A(E, h) be the subspace of constant central curvature connections and
letC,s(E) C C(E) be the subspace of polystable holomorphic structures o@théundle
E. We have the Donaldson—Narasimhan—Seshadri correspondence (the curve version of the
Hitchin—Kobayashi correspondence)

AE. ) 2> Cpu(E).

The content of the preceding Theorem can be summarized by saying that the Nahm trans-
form and the Fourier—Mukai transform are compatible with the Donaldson—Narasimhan—
Seshadri correspondence. That is, the following diagram is commutative

These correspondences descend to the quotients by the corresponding gauge groups,
giving a commutative diagram of correspondences between the associated moduli spaces.
First, the Donaldson—Narasimhan—Seshadri correspondence is well known to descend to
moduli spaces, sg@0, Chapter VII] The descent for the Nahm transform follows from
Remark 2.8nd for the Fourier—Mukai transform is a consequence of its functoriality.

3. Fourier—Mukai transforms for holomorphic triples
3.1. Holomorphic triples

A holomorphic triple over a smooth connected cufvés by definition a tripleT =
(E1, E2, ®) whereE;, i = 1, 2 are holomorphic vector bundles afde Hom¢(E>, E1).
Let n; andd; be the rank and degree éf for i = 1, 2. We say that the tripl& is of type

(n1, n2, d1, d2). There is a notion of stability for triples which depends on a real parameter
a (see[7] for details). Thex-degree ofT is defined by

deg,(T) = degE1 @ E2) + nox
and thex-slope is by definition

deg,(T)
ni1+n2 ’

ua(T) =
The stability condition is defined in a similar way as the slope stability for vector bundles,
precisely:T = (E1, E2, ®) is a-stable (respectivelg-semistable) if for every non-trivial

subtripleT” = (E}, E5, ) we have

we(T) < 1e(T) (respectively<).
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Here a subtriple means a triplé = (E’, E5, ®) and injective homomorphismag, y» of
sheaves such that the following diagram commutes

B2
2 1

| P

By —2 1.

Most of the properties which are valid for stable bundles carry along to stable triples.
We denote the moduli space of S-equivalence classaess#mistable triples of type
(n1, no, d1, do) by Ny(n1, n2, d1, d2) or simply by A, if there is no need to specify the
topological invariants\? (n1, n2, d1, d2) denotes the moduli space @fstable triples.
Animportant feature is that the stability condition gives bounds on the range of the param-
etera. More precisely, if11 # np andT = (E1, E2, ®) is a-stable of type«1, no, d1, d2)
then necessarily

O<oa, <a=<au

wherea,, = u1 — p2 anday = (14 (n1 + n2)/(In1 — n2|))(n1 — n2) (see[7]). In the
caseni = np, a ranges in §,,, co); we will write in this caseu) = co. The interval

(o, ) is divided into a finite number of subintervals determined by values of the param-
eter for which strict semistability may occur. The stability criteria for two valueslging
between two consecutive critical values are equivalent (and therefore the corresponding
moduli spaces are isomorphic). As[B] we shall denote by; the largest critical value,

in particular wheny; < o < oy, all the moduli spaces/, are isomorphic.

We use freely the terminology and result§ gf. Corollary 3.6, Proposition 3.17, Corol-
laries 3.19 and 3.20 and Lemma 4.6/¢f are particularly useful for the understanding of
this paper.

Now we recall how holomorphic triples on an elliptic cur@eare related taSU(2)-
equivariant bundles on the elliptic surfa€ex PL. In what follows we shall only deal with
SU(2)-equivariant bundleE which admit aC*>® SU(2)-equivariant decomposition of the
type

E=p'E1® (p*E2® q*H®?), (3.1)

wherep, g are the canonical projections 6f x P! onto its factors andH is the C*° line
bundle ovetP! with first Chern number equal to 1.

In the following, if not otherwise stated, &t/ (2)-equivariant bundle will always mean
an holomorphic bundle ovef x P, SU(2)-equivariant, of type given i(8.1).

We shall need the following formulation of Proposition 2.37h.

Proposition 3.1. Let C be a smooth connected curtren

(i) There is a one-to-one correspondence betwsé(?)-equivariant holomorphic vector
bundles E of typé3.1) and holomorphic extensions ov€rx P! of the form

0— p*E1 — E — p"E2 @ ¢*Op1(2) - 0
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whereE1, E> are holomorphic vector bundles on C. Hef®1(2) is the unique line
bundle of degree 2 ovét!.

(i) There is a(lnon-uniqué functorial correspondence between such extensions and ele-
ments oHom¢(E2, E1) and it is given by a functorial isomorphism

oc : EXth pi(p*E2 ® ¢*Opa(2), p* E1) = Home(Ez, E1)
induced by the choice of a trace isomorphism H(P, Op1(—2))—"~C.

Proof. A proof of (i) and (ii) can be found ifiL4, Proposition 3.9hnd[7, Proposition 2.3]
We recall that there is a natural isomorphism (see for instfiriig

EXt. p1(p* E2 ® ¢* Op1(2), p* E1)—Homp e, pry(p*E2 ® 4% Opa(2), p* Ex[1]).

(3.2)
Now we have

Hompcyp1)(P*E2 ® ¢* Op1(2), p* Ea[1])

= Homp e pyy (p* E2. p*E1 ® ¢ Opa(—2)[1])
—Homp(c)(E2, Rp.(p*E1 ® ¢* Op1(—2))[1])
—Homp(c)(E2, E1 ® Rp«(q*Op1(—2))[1])
= Homp(c)(E2, E1 ®c RI(P, Op1(—2))[1])
S Homp(cy(E2, E1 ®c HY(PY, Op1(—2)))

where the second isomorphism is adjunction between direct and inverse images, the third is
the projection formula, the fourth is base-change in the derived category and the lastis due to
the fact that sincéf°(P1, Op1(—2)) = 0, thenRI'(P!, Op1(—2))—> HX(PL, Op1(—2))[—1]

in the derived category. Composition with a trace mapH® (P!, Op1(—2))—~C gives

the isomorphism

oc  EXt p1(p* E2 ® ¢* Op1(2), p*E1) ~ Home(E2, Ex)
of the statement. O

Remark 3.2. We can describe quite easily in an explicit form the inverse isomor-
phismot. The inverse of the tracett : C—~H(P*, Op1(—2)) defines an element of
HY(P, Op1(—2)) and via the isomorphism

Homy,p1y(Op1(2). Op1[1]) =~ Extiy (Op1(2), Op1)—Exty: (Op1, Op1(—2))
—~ HY(P, Ops(-2))

induces a morphism 1t : Op1(2) — Opa[1] in the derived category. Thus, given a
morphism & : E; — Ej1, one finds thatagl(<b) is the element of E%prl(p*Ez(X)
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q*Op1(2), p* E1) corresponding to the morphism

PH(@) ® ¢*(tr™Y) : p*E2 ® ¢*Op(2) — p*Eq[l]
by the isomorphisn(3.2).

Remark 3.3. Two triples (E1, E2, @) and E1, E2, A®) (1 # 0) define different ex-
tensions though the same holomorphic bundle. However, they define diffet&a)-
equivariant holomorphic vector bundles (488,7]), because extensions correspond to
SU(2)-equivariant holomorphic vector bundles and not merely to holomorphic vector bun-
dles.

The correspondence iAroposition 3.1also preserves stability. Lei, be the Kahler
class oveX x P! defined byw, = a/2 p*wc + ¢*wp1, with @ € R*. The following result
is proved in[7].

Theorem 3.4. LetT = (E1, E2, ®) be an holomorphic triple over a smooth connected
curve C and let E be the holomorphigl/(2)-equivariant bundleC x P! defined in
Proposition 3.1 Then, if E; and E» are not isomorphicT is «-stable if and only if E

is slope-stable with respect to thaklér formw,. In the caseE1 >~ E> then T isx-stable

if and only if® =£ 0, E1 ~ E> is stable and E decomposes as a direct sum

E~(p*E1® q"Op1(1)) ® (p*E2 ® " Opa(1)).

Remark 3.5. The proof of statement (ii) iRroposition 3.1hat we have just given above
shows that the correspondence between triples and equivariant bundles also extends to
families. Indeed, families of (stable) triples correspond functorially to familieSlaR)-
equivariant (stable) bundles. This implies that the moduli spacef a-stable triples (of a

given topological type) over an elliptic curve corresponds, via the canonical isomorphism of
Proposition 3.1to a component of the moduli spaA&ﬁU(z) of SU(2)-equivariant bundles
(defined by the lift of th&SU (2) action determined b§B.1)) stable with respect to thedfler

form w,. Therefore, we have a canonical identification

NS MgU(Z).
3.2. Fourier—Mukai transforms for triples

We begin by briefly recalling the main properties of relative Fourier—Mukai transform
in the case of a trivial elliptic fibration over the projective line.
The corresponding functor is then
Sp1 : D(C x PY) — D(C x PY)

Sp(=) = Rorgpa (5 pa(2) © 7 (P) 53

wherer e, p1, 74, p1 @ndr ., & are the canonical projections@fx € x P! ontoits factors.
As in Section?2.1, this functor is invertible (see for instanf6,23)).
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We also know that the relative Fourier—Mukai transform is compatible with base-change
in the derived categori6]. In particular, for vector bundlegin D(C) andF in D(PY) the
base change isomorphism can be described as follows. Let us dengté thye projections
of C x P! onto its factors. Then

Sp(p"E ® 4" F)> Rz (10, pa(P"E @ 4 F) ® 7, +(P)
;Rnéxpl,*(nzx]pl(el*F) ® ﬂzxé(ﬂéE ®P))

SRp 1 (Th A(TEE®P)) ® §(F)

= " (R (ne(E) @ P) ® §(F) = pH(S(E) ® §*(F)  (3.4)

where the second isomorphism is duegto -, p1 = g o ¢ p1 @Nd p o Ty p1 = 7Tc ©

s & the third is the projection formula and the forth is base change in the derived category.
We also see that given morphisns. E; — E; of vector bundles o€ andy : F» — Fi

of vector bundles of#*, then the morphisrSp: (p*® ® ¢*y) is identified with5*(S(®)) ®

q*y, that is, the following diagram is commutative

o Sl (07 ®8%) R .
Sp(p*Ey ® ¢ F) S Spi(p*Er @ ¢*FY)

| |

PS@)BIY .,

P*(8(E)) @ ¢ (Fy) —————p"(S(E1)) ® ¢"(F1) (3.5)

where the vertical isomorphisms are the base change isomorpfs#)sve have just
considered.

We shall give two natural definitions of the Fourier—Mukai transform of a triple and show
that they are equivalent under the isomorphism giveniinof Proposition 3.1First we
must ensure that the transform of a triple is again a triple.

Definition 3.6. The tripleT = (E1, E2, ®) is IT; if both bundlesE;, E» are IT; with the
same index i.

Definition 3.7 (1). Let T = (El_, Es, <I>)_ be an IT triple. The FourierA—MukAai t[ansjorm of
Tis defined as the tripl& = (S'(E1), S'(E2), §'(P)). We shall writeT = (E1, E2, @) for
the transformed triple.

Since a tripleT corresponds exactly to afU/(2)-equivariant bundI€ on C x P!, this
suggests another definition of the Fourier—Mukai transform of artriffle as the triple
associated to the transform of the bunBleith respect to the relative transforfp:. This
observation leads us in a natural way to consider a relative version of the Nahm transform,
an argument that will be pursued in the next section. Note that in order that the relative
transform of the bundI& consists of a single sheaf, we should ensureliatiT;. This is
achieved by the following Proposition whose proof is a straightforward consequence of the
base change property of the Fourier—Mukai transform.
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Proposition 3.8. If E1 and E» are IT;-bundles thh respect t8 (with the same indey),i
then E isIT; with respect taSpa1 and its transfornm¥ sits in an exact sequence of the type

0— p'Ey— E— p*E2® 3" Op1(2) — O.

Therefore £ is an SU(2)-equivariant bundle o x PL.

Now we can define.
Definition 3.9 (II). We define the Fourier—Mukai transform of g Iffiple 7" = (E1, E2, )
as the triple associated to the transfokim= Sp, (E) of the associatedU(2)-equivariant
and IT; bundleE on C x PL.

It remains to check thddefinitions 3.7 and 3.@re compatible.
Proposition 3.10. Let T be anT triple and let E be the corresponding invariant bundle
on C x P1, then the (absolute) Fourier—Mukai transforfnin Definition 3.7corresponds

to the triple given by the transforr of Definition 3.9under the isomorphism given in
Proposition 3.1In other wordswe have the following commutative diagram

S, ~
Extéye (b B2 @ q°Op1(2),p* E1)) — Bxtfs, o (57 B2 @ " Op1 (2), " 1))

oc ZJ] lz s

ExtY(Es, ) Ext)(E,, E))

where the vertical rows are the isomorphisms introduceBrioposition 3.1and the hori-
zontal isomorphisms are induced from the relative and absolute Fourier—Mukai transforms.

Proof. Given a morphism® : E2 — E3, we know byRemark 3.2 that ogl(cb) is the
element of Ex}xﬂm(p*Ez ® q*Op1(2), p* E1) corresponding by3.2)to the morphism

PH@)® g (tr Yy : p*E2 ® ¢*Opa(2) — p*Ea[l].

Now, by (3.5), Sﬂbl(O'El(CD)) is the element of E%txpl([p*S(Ez) ® §*Op1(2), p*S(E1))
corresponding by3.2)to the morphism

PH(S(®) ® g*(tr ™) 1 p*S(E2) ® §* Opr(2) — p*S(E1)[1]
which, again byRemark 3.2corresponds togl(S(CD)). O

Remark 3.11. In order to ensure that the Fourier—Mukai transform gives rise to morphisms
between moduli spaces of triples one should check that the transform preserves families
of (IT) triples. This can be checked directly as in the usual case of families of sheaves,
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alternatively one can usRemark 3.5and note that the Fourier—Mukai transform is well-
behaved with respect to families and therefore induces morphisms between the moduli
spaces ofU(2)-equivariant sheaves.

3.3. Preservation of stability for smail

Let/\/fx; (n1, n2, d1, d2) be the moduli space of’ -stable triples withr,, = a,, + € such

thate > 0and &, «;;] does not contain any critical value. (We assumedhat1 > dz/n,
since this is a necessary condition for the moduli space not to be empty.) One has the
following (Proposition 3.23 irfi7]).

Proposition 3.12. If a triple T = (E1, E2, ®) is «);-stable E1 and E are semistable.
Converselyif E1 and E are stable andb # 0thenT = (E1, E2, ®) is o}, -stable.

Proposition 3.13. If (n1,d1) = 1, (n2, d2) = 1 anddy/n1 > d2/n2, the moduli space of
stable triples/\/‘;+ is isomorphic to & -fibration overM¢(n1, d1) x Mc(n2, do), where

N =nsd1 —nido — 1

Proof. By Proposition 3. 12/\/s+ is the projectivization of a Picard sheaf 8¢ (1, d1) x

Mc(na, d2) (Corollary 6.2 in [8]) which in this case is a vector bundle with fibre
HO(C, E} ® E1) over (E1, E2), sinceHY(C, Ey ® E1) ~ HY(C, EY ® E2)* =0. O

Given an [T triple T = (E1, E2, ®) with transform7 = (El, Eo, g>) we denote byxm
the minimum value of the stability parametewith the type (1, 12, d1, dz) defined byT".
As aboveg;! is any real number such that the interv@,( &;] does not contain critical
values.

Theorem 3.14. Let T = (E1, E2, ) be a o) -stable triple such that(ni, d1) =1,

(nz, dz) =1 and didz > 0 (this forces® # 0). Then the Fourier—Mukai transforri =

(El, £, cI)) is & -stable. The result also holds in the converse direction with the obvious
modifications on the hypotheses.

Proof. By Proposition 3.12we have thaE1 andE; are both semistable. Moreovér and
E> are stable due to the conditions on the rank and degree. Thus in th@teple 1, E», D)
both bundles are stable. Broposition 3.12gain we conclude that the tripfeis alsoa: -
stable. The proof of the converse is identicall

Corollary 3.15. Keeping the conditions stated in the previous Theorem and assuming ad-
ditionally thatdy/n1 > d2/n2, then the Fourier—Mukai transform induces an isomorphism

. s X ArS

In other words the Fourier—Mukai transform induces an isomorphism betweerPthe
fibrations described ifProposition 3.13
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3.4. Preservation of stability for large

Recall thatay is the largest critical value in the intervalk,(, ay). If af <a <
ay the stability condition does not vary in this range, and we can then denote by
/\/" (n1, n2, d1, d2) the moduli space af-stable triples for any value € («r., o).

The relationship between the stability of the triple and that of the involved bundles is
given by the following Propositior{§, Propositions 7.5 and 7.6]

Proposition 3.16. LetT = (E1, E2, ®) be ane-semistable triple for some; < o < ayy,
and let us suppose that > n,. Then T defines an extension of the form

05 Er 3 El 5> F-0 (3.6)

with F locally freg and E> and F are semistable. Converselgt T = (E1, E2, @) be a
triple defined by a non trivial extension of the fo(&16), with F locally free. IfE; and F
are stable then T ig-stable fora;, < o < ay,.

From this, we have the following result (Theorem 7.780h.

Theorem 3.17. Letni > np, di/n1 > d2/n2, (n1 —n2,d1 — do) = 1 and (n2, d2) = 1.
Then the moduli spac&f‘;, (n1, n2, d1, d2) is smooth of dimensiompd; — n1d2 + 1 and
M

it is isomorphic to @ -fibration overMc(nz, do) x Mc(n1 — n2, di — da), whose fibre
over the poin(E», F) is given byPHY(C, E» ® F*), andN = nady — n1do — 1.

Remark 3.18. The casei; < ny reduces to the situation iftheorem 3.1by considering
the dual triple.

We prove now that the Fourier—Mukai transform preserves stability for “large” values of
the parametes.

Theorem 3.19. LetT = (E1, E2, ®) be anu-stabletriple suchthati, — no, di — d2) = 1,
(n2,d2) = 1,n1 # npanda; < a < ay. Suppose also thay > 0,d2 > Oanddy — do >
0 (respectively/s < 0, dz < 0andd; — d2 < 0); then T isITo (respectivelyT1) and the
transformed triplel” = (E1, Eo, ®) is a-stable fora € (&7, &y) Whered; andé,, are the
values corresponding to the transformed trifile

Proof. We prove the I case, the proof of the other case is entirely similar. Without loss of
generality we may assumeg > n». By Proposition 3.16he mapd : E» — E1 is injective

and the quotient she&fin 0 - E> — E1 — F — 0 is locally free. MoreoverE,; andF

are stable, and henced,Tfrom which it follows thatE is ITg. Transforming the above
sequence we get

0—)2’72—)2?1—)%—)0.
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Since the Fourier-Mukai transform preserves stabiftsoposition 2.} it follows that E>
and F are stable. ByProposition 3.1&" = (E1, E2, ®) is a-stable fora € (@, ap). The
proof of the converse is identical. O

Under the same conditions ®heorem 3.19we have the following.

Corollary 3.20. The Fourier—Mukai transform induces an isomorphism between the moduli
spaces ofT; stable triples:

N‘;& (n1,n2,d1, dz) ~ /V'g& (—1Ydr, (1) da, (1) n1, (1) Ttny).

As a consequence, the Fourier—Mukai transform yields an isomorphism betweBN-the
fibrations described ifheorem 3.17

3.5. Applications to moduli spaces 6hx P!

One notable application of the theory of triples is the construction of slope-stable bundles
on C x P! with respect to the polarization,, with « > 0 (see Theorem 9.2 if8]). It
seems quite natural to use the relative transfSgmnto further study the properties of those
bundles and to produce new examples of stable bundles. We give in this section a result on
the preservation of stability for a class of bundlegbr P! which can not be handled using
the standard techniques based on choosing “suitable polarizaf@@jsis done for example
in [9] or [16], because the polarizationg, are not suitable; the reason for this being that
there existSU(2)-equivariant bundles which asg,-stable and whose restriction to a fibre,
is never stable (here we are assuming 0). To see this, takg such thatd : E; — Eq
is not an isomorphism and note that the restriction of such a bundle to @fizgiven by
an extension

00— E1— E;,—> E>— 0.

Since the associated triple is stable, Lemma 4[Bliimplies that Ext(E», E1) = 0 when-
ever ® is not an isomorphism, Therefore, the previous extension is always split and the
restrictionE; is not stable.

The following Proposition follows now immediately.

Proposition 3.21. Let T = (E1, E2, ®) be ana-stable triple and let E be its associated
vector bundle or€ x P1. Then T idT; if and only if E isIT; with respect taSp1.

We can use this Proposition to prove the following result.

Theorem 3.22. LetT = (E1, E2, ®) be ana-stable triple withE; >~ E> and® # 0. As-
sume that eithetk(E1) = rk(E2) > 1ordegE; = degE> # 0.Then the associatefi/(2)-
equivariant bundle E o€ x P! is IT and the Fourier—Mukai transforn is polystable.
Moreover, the triplel” = (E1, E, ®) is a-stable for anye > 0.
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Proof. Thanks toTheorem 3.4we haveE >~ (p*E1 ® ¢*Op1(1)) ® (p*E2 ® ¢*Op1(1))
with Eq1 >~ E; stable. The base change property for the Fourie—Mukai transform implies

Sp1(E) ~ (p*S(E1) ® 4" Op1(1)) @ (p*S(E2) ® 4" Opa(1))

ThereforeE is IT if and only if E1 >~ E» is IT with respect taS, and this follows from
Proposition 2.Xkince the stability o£1 ~ E» implies that its degree is not zero unless the
rank is 1. The polystability ofz is a consequence of the above expressionifand the
fact thatS preserves stability, sé@roposition 2.1

On the other hand, let us recall that a tripkey ( E2, ®) with E1 ~ E> is a-stable, for
anya > 0, ifand only if® is an isomorphism anf1 >~ E> is stablg7, Lemma 4.6] These
conditions are preserved I8y thereforeT is &-stable for anyx > 0. [

Collecting previous results, particulafijheorem 3.19Theorems 3.14 and 3.we have.

Theorem 3.23. Let T be ana-stable triple of type(ni, na, d1, d2) with « and (n;, d;)
satisfying one of the conditions

(i) (n1—n2,d1—d2) =1, (n2,d2) =1,n1 #np anday < o < ay. Suppose also that
d; > 0fori=1,2,d1 —dy > 0 (respectivelyl; < 0i = 1,2,d1 — do < 0)anda; <
a <oy,

(i) (n1,d1) =1, (n2,d2) =1,d1d> > 0ande,, < o < (x;:’;,

(i.e. one of the conditions imheorems 3.19 or 3.)4Then the correspondingSU(2)-
equivariant bundle E o@ x P1isIT. Moreover ifE1 and E» are not isomorphic, then the
Fourier—Mukai transformk is stable with respect to the polarizatias,, whered is the
corresponding parameter for the transformed triple accordingheorem 3.19n case(i)
and toTheorem 3.14n case(ii).

The relative Fourier—Mukai transform induces an isomorphism between the correspond-
ing moduli spaces a§U(2)-equivariant bundles as follows from the previous Theorem and
Remarks 3.5 and 3.1Therefore we have:

Corollary 3.24. Let ', be a moduli space of-stable triple satisfying one of the conditions

(i) or (ii). LetMﬁU(z) be the corresponding moduli spaceSdf(2)-equivariant bundles on
C x PL. Then the relative Fourier—Mukai transform gives an isomorphism

Spr : MV@ S MV,

4. Nahm transforms for triples
4.1. Relative Nahm transform

In this section, we modify the absolute Nahm transform to produce a relative version of
it.
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_ For every elliptic curveC we consider the projections: X = C x P!> PG X =
C x P! — P! whereC is the dual elliptic curve. We endow the pull-ba#i: of the
Poincaé line bundle taX xpa1 X, with the pull-back connectioﬁppl. For every poink™=

(&, 1) € C x P* we endow the Hermitian line bundf@p: ; = Prx, — Xa), obtained

by restrictingPp: to the fiberX;) C X xp1 X of g overg(x) S P1, with the flat unitary
connectionVs given by the restriction oVp ;. In this way X parametrizes the gauge
equivalence classes of Hermitian flat line bundles along the fibers af — P2

Let us consider a Hermitian vector bundle— X with a unitary connectiorV. We
denote byE; the restriction of to the fibreX; = ¢~1(¢), V; is the restriction oV to E;.
On the vector bundlé ;) ® Pp1 ;, we have the connectioW; = Vi) ® 1+ 1 ® V;.
Therefore, we have the family of coupled Dirac operators

Di = V20, op, . Qo). Eqw) ® Ppr ) = QM (Xqm). Eq) © Pe. 3).

As in the absolute case we define the index Idef this family of Dirac operator®
parametrized by’ x PL. The relative Nahm transform maps a Hermitian vector bundle with
a unitary connection ovef x P! into a Hermitian vector bundle with a unitary connection
overC x PL.

Definition 4.1. Let (E, V) be a pair formed by a Hermitian vector bundle E agex P! and
a unitary connectio on E. We say thatK, V) is an ITp: (index Theorem) pair relative to
P if either CokerD = 0 or KerD = 0. In the first case we say tha (V) is an [Tpa_-pair,
whereas in the second we call it anplT; pair. The transformed bundle of anghT;-pair

is, according to the parity of i, the vector bundie= +Ind(D) — C x PL.

Proceeding in the same way as in the absolute case we can endow the transformed vector
bundle of an I'1-pair with a Hermitian metric and a unitary connection in a natural way.
In doing this, since all the fibrations involved are trivial, the main difference one encounters
is that the parameter space of the family is enlarged i C x P2, but sinceX ;) ~ C
the Dirac operators are still defined on vector bundles over the elliptic €urVieerefore,
the theory parallels the one developed in the absolute setting.

Definition 4.2. Let (E, V) be an ITp1-pair. We calll &, V) the relative Nahm transform of
(E, V) and denote it bNpa(E, V).

Let E — C x P! be a holomorphic vector bundle endowed with a unitary conne&tion
compatible with the holomorphic structure. Since the $pimac operatoD; gets identified
with the Dolbeault-Dirac operator df;;) ® Pp1 ;, by Hodge theory and the Dolbeault
isomorphism, we have

Ker D; ~ HO(X@()}), E4) @ Ppa 3) (4.1)

CokerD; >~ Hl(XgI(,}), E4) @ Ppa 3)- (4.2)
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Letus suppose thétis IT; with respect to the relative Fourier—Mukai transform described
in Section3.2 The isomorphismé4.1) and (4.2)nean that £, V) is an ITp1 ;-pair. As we
saw there, by2, Theorem 2)pr [12, Theorem 3.2.8we have a natural™ vector bundle
isomorphism induced by Hodge theory

pp1 : Shu(E)—>E.

Moreover, since the PoindabundlePp: — C x C is a holomorphic line bundle and the
connectiorivp]pl is compatible with the holomorphic structure, the same arguments that in
the absolute case led us to proMeeorem 2.12jive us now the following.

Theorem 4.3. Let F1, F» be Hermitian vector bundles ovér x P! endowed with unitary
connectionsvy, V2 such thaf(F1, Vi), (F2, V2) are ITp ;-pairs with respect to the Nahm
transform. Then we have

1. The connection&1, V- are compatible with the holomorphic structureséq;l(Fl),

Sﬁn(Fz), respectively. Thus, the curvature of the connectiénsys is of type(l, 1).
2. For every holomorphic morphisti : F1 — F> we have an induced holomorphic mor-
phismA(®) : F1 — F> and a commutative diagram

~ (A

F,—=S(F)

1
Ne1 (9) Sz1(¥)

~ PFy

s 102 (43)
4.2. Relative Nahm transform féiU (2)-invariant Einstein—Hermitian connections

Letus suppose that;, E» are complex Hermitian vector bundles o@saind let us choose
an SU(2)-invariant metric onH®2. We put on the bundl&€ = p*E1 @ (p*E2 ® ¢g*H®?)
the Hermitian metric which is determined in a natural way by the Hermitian metri&s,of
Ep and H®2.

By Proposition 3.5 if14] there is a one to one correspondence betweerstHe)-
invariant unitary connections da and the triples/ = ((E1, V1), (E2, V2), ®) formed by
unitary connectiond/;, Vo on E1, Eo, respectively, and &°° vector bundle morphism
® : E; — E1. Moreover, this correspondence also holds at the levelltgR)-invariant
holomorphic structures oB. Before discussing it we introduce the following.

Definition 4.4. We call a triple7 = ((E1, V1), (E2, V2), ®) integrable ifd : Eo — Ej is
holomorphic with respect to the holomorphic structures determined by the connéétions
andV,.

Proposition 3.9 if14] gives us a one to one correspondence betwi2)-invariant
holomorphic structures df considered as integral§é/(2)-invariant connections (i.e. con-
nections with curvature of type (1)), and integrable triple¥ = ((E1, V1), (E2, V2), ®).
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This is precisely the content dfroposition 3.1which gives us a bijective correspon-
dence between th&U(2)-invariant holomorphic structures @and holomorphic triples
= (1= (E1. 3"), & = (E2,8"2), ®).
Let us denote byw7 the SU(2)-invariant integrable connection &determined by an
integrable triple7. If we express its curvature with respect to the splittiig= p*E1 &
(p*E2 ® ¢*H?), we have

T prFYt — B A B 9B
Fv = * * 7V x5V * (4'4)
—3p PPF2@1+1®¢*FY — B* A B,

whereFVi is the curvature of the connectiéh, FV' is the curvature of the unique/(2)-
invariant unitary connection oH®2, g = p*® ® ¢*n, with 1 an SU(2)-invariant section
of H®~2 andd is the Cauchy-Riemann operator determined by the connedigré, and
V', for further details sefl 4,7].

We want to study the relative Nahm transform of #1&(2)-equivariant bundles, V7)
associated to integrable triples.

The following is straightforward.

Proposition 4.5. Let T= ((E1, V1), (E2, V2), ®) be an integrable triple on C and let
(E, VT) be its associated bundle with connection ogex P1. If both (E1, V1), (E2, V2)
are IT;-pairs then(E, V7) is an ITpa ; pair.

Given an integrable tripld’= ((E1, V1), (E2, V2), @) such that £1, V1) and E2, V2)
are IT;-pairs we can form the tripld= ((E1, V1), (Ez, Vy), ®) obtained by means of the
absolute Nahm transform. Here we have denotedlilje Nahm transform\(®). By the
sake of brevity the same notation is used hereafter. On the other hadi Nf') is the
vector bundle with connection oveét x P! associated to the tripl& we can apply to it
the relative Nahm transform to obtalvip: (E, v7). Taking into account the compatibility
between the Fourier—-Mukai and Nahm transforiteggorems 2.12 and 4a&hdProposition
3.10we have.

Proposition 4.6. Npl(E v7) is the vector bundle o6’ x P! associated to the trlplé'—
(E1, V1), (E2, V2), ®).

Definition 4.7. Let 7= ((E1, V1), (E2, V2), ®) be an integrable triple oB. We say that it
satisfies the-coupled vortex equations if

iAFV1 4+ ®d* = 27tldg,
iANFV2 — @*® = 2r7'Id,,

Note that in order to have solutionst’ must fulfill the following equation
nit + nz‘r/ =di +do, (4-5)

with n; = rank(E;) andd; = deg(E;).
The following Proposition was proved [f3] (see alsq7]).
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Proposition 4.8. Let 7= ((E1, V1), (E2, V), ®) be an integrable triple and 16¢7 be the
corresponding connection on E. Letindt’ be related by(4.5)and let us suppose that

(n1+n2)t—d1—do
o= >
nz

0.

ThenT = ((E1, V1), (E2, V2), ®) satisfies ther-coupled vortex equations if and only if
v7Tis a Einstein—Hermitian connection dii — C x P! with respect to the Kfiler form
wy = a/2 p*oc + q*wp1, wherewp: is the Fubini-Study KFiler form normalized to volume
one andwc is a Kahler form of unit volume.

Proposition 4.9. Let7 = ((E1, V1), (E2, V2), ®) be an integrable triple on C which sat-
isfies ther-coupled vortex equations and lEt= C x PL. Then:

(i) If the Hermitian endomorphism&rtldg, — ®®* and 2z7'ldg, + ®*® are non-
negative and there existi, x2 € C such that2rrldg, — ®®*(x1) > 0, 2v7'ldg, +
d*®(x2) > 0,then(E, V7) is anlTp1 g-pair and(E1, Vi), (E2, Vo) arelTq pairs.

(i) If the Hermitian endomorphism8ztldg, — ®®* and 2r7'ldg, + ©®*P are non-
positive and there exist1, x» € C such that2rrldg, — ®P*(x1) < 0, nr'ldg, +
d*d(x2) < 0,then(E, V) is anlTp1 q-pair and(E1, Vi), (E2, V2) areIT; pairs.

Proof. For everyx'= (&, 1) the restriction off = p*E1 @ (p*E2 ® ¢* H®?) to Xy = C
is isomorphic taE; @ Ez asC* bundles. Now4.4)implies that the curvature 6f;(z) with
respect to the splitting;z) =~ E1 @ E2 is

V.
FVa® — F0
0 FV2 )’

The claim now follows fronirheorem 2.6 [

4.3. Covariantly constant triples

Definition 4.10. Let 7= ((E1, V1), (E2, V2), ®) be an integrable triple o@. We will say
that7is covariantly constant kb ®* is covariantly constant with respect¥ and®*® is
covariantly constant with respect 1.

Remark 4.11. Denote byV the connection naturally induced on Hafia( E1) by V1 and
V2. If @ is covariantly constant with respect¥athen itis easy to check thd@is covariantly
constant. Moreove is covariantly constant with respect¥if and only if ® : E; — Ej

is an anti-holomorphic map.
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Proposition 4.12. Let 7= ((E1, V1), (E2, V2), ®) be a covariantly constant integrable
triple on C. Thenwe have holomorphic orthogonal decompositions

E1 >~ Kerd* @ E)
E> ~Kerd @ E,

which are compatible with the connections, abdnduces an holomorphic isomorphism
®: E) — Ej.

Proof. Since®®* and®*® are covariantly constant vector bundle endomorphisms, they
are holomorphic and their eigenvalues are constant. Moredwet, ©*® are positive Her-
mitian endomorphisms whose spectrum may differ only at 0; Therefore, we have orthogonal
decompositions

E1=Kerd*® E1(M1) @ ... D® E1(At)
Er =Ker®d ® Eo(A) @ ... ® E2(rr),

whereE1(};), E2(;) are the eigenbundles with eigenvalye# 0 with respect to the holo-
morphic endomorphism& ®* and ®*®, respectively. Since these endomorphisms are
covariantly constant, the subbundIEs(%;), E2();) are preserved by the connectiovis,

V>, respectively. Moreover, for eveily we have an isomorphism

@ 1 Eo(A;)—> E1(Xi)

Therefore, if we denoté] = E1(A1) @ ... ® E1(A), E5 = Eo(A1) @ ... & E2(Ak), we
have an isomorphism

®: EYb>E)

as required. O

With the same notations as above, we have the following

Proposition 4.13. Let 7= ((E1, V1), (E2, V2), ®) be a covariantly constant integrable
triple on C. Ther7 satisfies the-coupled equations if and only if

1. V4 induces a constant central curvature connectiorkam ®* with factor 2z, unless
Ker®* = 0, and a constant central curvature connection Bpwith factor = (r + 7’)
unlesse] = 0.

2. Vs induces a constant central curvature connectionkar ® with factor 2zt unless
Ker® = 0 and a constant central curvature connection B with factor z(r + ')
unlesske’, = 0.
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Proof. SinceTis covariantly constant we have the decompositions

E1=Kerd*@® E1(M1) D ... ® E1(At)
E; =Ker®d ® Ea(r1) @ ... D E2(rr),

provided byProposition 4.12Moreover, sincd satisfies the-coupled equations, we have

iAFY1 = 2ntldg, — P*
iAFV2 = 2n7'|dg, + ®* .
Therefore, we have
iNF  eror = 2ntldkerer  iAF Y gy = (277 — A)ldE () (4.6)
iNFV2kero = 277 ldkero  iAF 25,0, = (207 + 2i)ldgy()- (4.7)

This implies that Ked*, E1();), Ker®, E»(};) are bundles with constant central cur-
vature connection with slopes

A

plkere®) =7 p(Er(i)) =7 - o
T

A
pKerd) =1 pu(E2() = 7'+ .
T

But since E1(1;) is isomorphic toE2();) we must havew(E1(A;)) = w(E2();)), that is

Ari = m(r — 7). Therefore, in the above decompositions there is only one eigenvalue and if
we substitute.; in (4.6) and(4.7)we get the required values for the factors of the constant
central curvature connections. The converse statement is just a simple checking.

Corollary 4.14. LetT = ((E1, V1), (E2, V2), ®) be a covariantly constant integrable triple
on C which satisfies the-coupled equations. TheRis (r — t’)-polystable. Moreovef]
decomposes as a sum(ef— t’)-polystable triples.

T = (Kerd*, 0,0) @ (E}, Ej, ®) ® (0, Ker d, 0).

Proof. The Hitchin—Kobayashi correspondence for triplgs, Theorem 5.1]establishes
an equivalence between triples that satisfy theoupled vortex equations and £ t')-
polystable triples. Therefore, the Corollary follows at once.

However, in the present case it is possible to give a direct proof. Girszgisfies the
t-coupled vortex equationBroposition 4.13mplies that Ked*, E} ~ E/, and Kerd are
polystable bundles with slopes

uKer®*) =7, u(E) =wu(Ey) =3(t+7),  wKerd)=r'
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Therefore, we have

wo(Kerd*, 0,0) = u(Kerd*) =t
Ha(Ey, Ey, ®) = p(Ey) = w(Ep) + § =1
1 (0, Ker®, 0) = u(Kerd) + o =1,

wherex = (7 — 7'). SinceE), carries a constant central curvature, there exists an orthogonal
decomposition

E=Er®.. .0 E

compatible with the connection and such that every factor carries an irreducible constant
central curvature connection. Sind&® = X Idg, it follows that we have an orthogonal
decomposition

E; =0 ED) o ... @ o(EM)

Thus, the triple £, E5, d>|E12) splits into the direct sum of subtripleEg), d)(E(Zi)), d)lEg))

with Eg) stable andd>‘E(,-) an isomorphism. B)7, Proposition 3.21}this implies that
2
(EY, E5, d’\E’Z) is a-polystable. Therefore]is a-polystable (se§7, Definition 3.15). [

Remark 4.15. If T= ((E1, V1), (E2, V2), ®) is a covariantly constant integrable triple on
C which isa-stable withE1 # 0 andE2 # 0, then the previous Corollary implies thét
has to be an isomorphism.

As a consequence &froposition 4.9ve immediately obtain.

Lemma 4.16. Let 7= ((E1, V1), (E2, V2), ®) be a covariantly constant integrable triple
on C which satisfies the-coupled equations.

() Ifr > 0andr’ > Othen(E, VT)is anlTp g-pairand(E1, Vi), (E2, V2) arelT pairs.
(i) Ifr <Oandr < Othen(E, V7)is anlTp 4-pairand(E1, Vi), (E2, V2) arelT; pairs.

Theorem 4.17. LetT = ((E1, V1), (E2, V2), ®) be a covariantly constant integrable triple
on C which satisfies the-coupled equations and 1éE, V) be its associated bundle with
connection ove€ x P,

1. If r > Oandr’ > Othenthe Nahmtransforfi= ((E1, V1), (E2, Vo), ®)isacovariantly
constant integrable triple. MoreoveF satisfies thé-coupled equationgor some value
of 7, ifand only ift = 7'.

2. If t < 0andr’ < Othenthe Nahmtransforfi= ((E1, V1), (E2, V2), ®)isacovariantly
constant integrable triple. MoreoveFsatisfies thé-coupled equationgor some value
of 7, ifand only ift = 7'.
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Proof. Proposition 4.13jives us a decomposition

E1 >~ Kerd* @ E)
E> ~ Ker® @ E),

SinceT satisfies the-couple vortex equation®roposition 4.13mplies that (Kerb*, Vy),

(E7, V1) =~ (E5, Vo) and (Ker®, V,) are bundles with constant central curvature with slopes
n(Ker®*) = ¢, u(E)) = n(Ey) = %(r + 1), u(Ker®) = v’. Now if we apply the Nahm
transform and denote®)* by ®*, Theorem 2.1limplies that (Ked* = Ker ®*, V),
(Ey, V1) = (E}, Vo) and (Kerd = Ker @, V7) are bundles with constant central curvature
and we get a decomposition

By~ Kerd* @ E}
Ey~Kerd o E)

The conditions ‘@*CD)‘E& =A IdE/Z, (<I><I>*)‘E/1 =A ldE/1 with A # 0 imply (‘i’*&)@; =
adg, (&)ﬁ)*)lg,l = ldg,. Let us prove the first equality in the dTease. Givers, 1 €
Eze = KerdV2s c QO(E, ) one has

(D% D(s). 1), = (B(s), D),

Taking into account the definition of the Hermitian metricf@);f]g given in(2.3)of Section
2.2and the definition ofb given inTheorem 2.12ve get

(). 8, = |

Ce

(®(s). D)) g, 0 = /C (D D(s). 1)z,

§

Therefore, ifs, € £}, one has

(D" D(s), t>1:32,s =A(s, [)Ez,g
which proves our claim. The second equality follows in the same way. The proofs in the
IT1 case are entirely similar.

This proves that 1, V1), (E2, V2), ®) is a covariantly constant integrable triple. More-
over, the slopes of these bundles a(®er ®*) = —1/7, u(E;) = w(Es) = —2/(x + ),
u(Ker®) = —1/7'. An easy computation shows now thatfulfills the conditions of
Proposition 4.13n order to have a solution of thiecoupled vortex equations, for some
value ofz, ifand only ift = 7. O

As a consequence of the preceding Theorem and the Hitchin—Kobayashi corre-
spondence for triples (Theorem 5.1 [if]), which establishes an equivalence between
holomorphic triples which satisfy the-coupled equations and-polystable triples,
we have.
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Corollary 4.18. Polystability is not preserved, in general, under the Fourier—Mukai and
Nahm transform.

Proof. Itisenoughtotake any stable bundfas F>, F suchthaj(F) = %(/,L(Fl) + n(F2))
andu(F1) > u(F2), which are known to exist since the moduli spaces of stable bundles with
fixed coprime rank and degree over an elliptic cubware isomorphic t&€ and thus they are
not empty (se¢27]). Now define the triplel’ = (F1,0,0) @ (F, F, Idg) @ (0, F», 0) and
endowFy, F», F with connections of constant curvature compatible with their holomorphic
structures according to Donaldson Theordrh]. Now, Proposition 4.13mplies thatT is
(r — ©)-polystable since, by construction, it satisfies theoupled equations, with =
n(F1) andt’ = pu(Fy). A

If we takeu(F1) # u(F2), Theorem 4.1Tmplies that the transformed triple does not
satisfy thet-coupled equations for any value of By the Hitchin—Kobayashi correspon-
dence for triple§7, Theorem 5.1]this implies thafl" is not polystable. [

The preservation of stability remains as an open question. Notice that in the case of stable
triples (E1, E2, ®) with E1 # 0 andE> # 0, the condition of being covariantly constant
implies thatd is anisomorphismemark 4.1% Now stability is preserved in the conditions
of Theorem 3.22
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